zoukankan      html  css  js  c++  java
  • 卷积网络实现cifar数据集分类

    import tensorflow as tf
    import os
    import numpy as np
    from matplotlib import  pyplot as plt
    from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dropout,Flatten,Dense
    from tensorflow.keras import Model
    np.set_printoptions(threshold=np.inf)
    
    cifar10=tf.keras.datasets.cifar10
    (x_train,y_train),(x_test,y_test)=cifar10.load_data()
    x_train=x_train/255.
    x_test=x_test/255.
    
    class Baseline(Model):
        def __init__(self):
            super(Baseline,self).__init__()
            self.c1=Conv2D(filters=6,kernel_size=(5,5),padding='same')   #6个5*5卷积核
            self.b1=BatchNormalization()                                 #批标准化
            self.a1=Activation('relu')
            self.p1=MaxPool2D(pool_size=(2,2),strides=2,padding='same')  #最大值池化
            self.d1=Dropout(0.2)                                         #舍弃
    
            self.flatter=Flatten()                                      #数据拉直
            self.f1=Dense(128,activation='relu')
            self.d2=Dropout(0.2)
            self.f2=Dense(10,activation='softmax')
    
        def call(self,x):
            x = self.c1(x)
            x = self.b1(x)
            x = self.a1(x)
            x = self.p1(x)
            x = self.d1(x)
            x = self.flatter(x)
            x = self.d2(x)
            y = self.f2(x)
            return y
    
    model=Baseline()
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    checkpoint_save_path='./checkpoint/Baseline.ckpt'
    
    if os.path.exists(checkpoint_save_path+'.index'):
        print('-------load the model-------')
        model.load_weights(checkpoint_save_path)
    
    cp_callback=tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                   save_weights_only=True,
                                                   save_best_only=True)
    
    history=model.fit(x_train,y_train,batch_size=32,epochs=5,validation_data=(x_test,y_test),validation_freq=1,
                      callbacks=[cp_callback])
    
    model.summary()
    
    file=open('./weights.txt','w')
    for v in model.trainable_variables:
        file.write(str(v.name)+'
    ')
        file.write(str(v.shape) + '
    ')
        file.write(str(v.numpy()) + '
    ')
    
    file.close()
    
    ##########show###########
    acc=history.history['sparse_categorical_accuracy']
    val_acc=history.history['val_sparse_categorical_accuracy']
    loss=history.history['loss']
    val_loss=history.history['val_loss']
    
    plt.subplot(1,2,1)
    plt.plot(acc,label='Training Accuracy')
    plt.plot(val_acc,label='Validation Accuracy')
    plt.title('Training and Validation Accuracy')
    plt.legend()
    
    plt.subplot(1,2,2)
    plt.plot(loss,label='Training Loss')
    plt.plot(val_loss,label='Validation Loss')
    plt.title('Training and Validation Loss')
    plt.legend()
    plt.show()
  • 相关阅读:
    bzoj3622: 已经没有什么好害怕的了
    BSGS
    LOJ#2320 生成树计数
    ??? cliquers
    生成函数
    洛谷P5206 数树
    01分数规划
    差分约束系统
    51nod1238 最小公倍数之和 V3
    51nod1237 最大公约数之和 V3
  • 原文地址:https://www.cnblogs.com/python2/p/13556786.html
Copyright © 2011-2022 走看看