zoukankan      html  css  js  c++  java
  • 爬虫滑块计算图片之间的距离更加精确

    1.思路

    原先图片匹配一般都是缺口匹配全图
    优化点:
        1.缺口图片匹配缺口所在图片那一行图片可以提高他识别率
        2.移动后再进行2次匹配计算距离
    

    2.代码

    #.缺口图片匹配缺口所在图片那一行图片可以提高他识别率
    def get_image_deviation():
        ##读取滑块图
        block = cv.imread("img.png", -1) #完整图片有个缺口
        backimg = cv.imread("bg_img.png") #缺口图片
        # block = cv.resize(block, (240, 480))
        # backimg = cv.resize(block, (240, 480))
        ##灰度化
        gray_backimg = cv.cvtColor(backimg, cv.COLOR_RGB2GRAY)
        blockWidth, blockHeight = block.shape[1], block.shape[0]
        ##识别滑块图前景
        ###由于滑块图为带透明的png,可根据透明通道来判断前景位置
        ##识别物体框,生成blockmask
        left = blockWidth
        right = 0
        top = blockHeight
        bottom = 0
        for i in range(0, blockHeight):
            for j in range(0, blockWidth):
                if block[i, j, 3] > 0:
                    if j <= left:
                        left = j
                    if j >= right:
                        right = j
                    if i <= top:
                        top = i
                    if i >= bottom:
                        bottom = i
        blockBox = block[top:bottom, left:right]
        blockBox_width, blockBox_height = blockBox.shape[1], blockBox.shape[0]
        print(blockBox_width)
        blockMask = np.zeros([blockBox_height, blockBox_width], np.uint8)
        for i in range(0, blockBox_height):
            for j in range(0, blockBox_width):
                if blockBox[i, j, 3] > 0:
                    blockMask[i, j] = 255
        blockBox = cv.cvtColor(blockBox, cv.COLOR_RGBA2GRAY)
        ##由于边界点存在光照影响,为了避免边界点对匹配的影响,进行腐蚀操作
        kernel = np.ones((3, 3), np.uint8)
        blockMask = cv.erode(blockMask, kernel, iterations=1).astype(np.float32)
        backgroundROI = gray_backimg[top:bottom, :]
        ##将backgroundROI、blockBox都转化成float型
        blockBox = (blockBox * 1.0).astype(np.float32)
        backgroundROI = (backgroundROI * 1.0).astype(np.float32)
        ##使用cv的
        res = cv.matchTemplate(backgroundROI, blockBox, cv.TM_CCORR_NORMED, mask=blockMask)
        loc = cv.minMaxLoc(res)
        print("loc==", loc[3][0])
        locs = (loc[3][0])
        return locs
    
    #移动前获取滑块那部分页面上的图片用selenium截图的形式
    driver.find_elements_by_xpath('//*[@class="yidun_bg-img"]')[1].screenshot('0.png')
    bg_act = cv.imread('0.png')
    bg_act_height, bg_act_width = bg_act.shape[0],bg_act.shape[1]
    bg = cv.imread('bg_img.png')
    bg_height, bg_width = bg.shape[0],bg.shape[1]
    block = cv.imread('img.png', -1)
    scale = bg_act_height * 1.0 / bg_height
    scale1 = bg_act_width * 1.0 / bg_width
    block_act = cv.resize(block, (0,0), fx = scale, fy=scale)
    
    print('scale: ', scale, scale1)
    x1,x2 =get_image_deviation(bg, block)
    x1 = int(x1*scale)
    print("x1x2=", x1, x2)
    
    
    #部分代码
    ActionChains(滑块元素).move_by_offset(xoffset= 移动上面生成的距离, yoffset=0).perform()
    
    #第一次移动后二次识别部分代码
    
    driver.find_elements_by_xpath('//*[@class="yidun_bg-img"]')[1].screenshot('bg1.png')
    bg_act1 = cv.imread('bg1.png')
    x3,x4=get_image_deviation(bg_act1, block_act)
    
    
    print("x3x4=", x3, x4)
    time.sleep(5)
    ActionChains(driver).move_by_offset(xoffset= x1-x3, yoffset=0).perform()
    
    
  • 相关阅读:
    关于docker日常操作(一)
    html基础
    Java6开发WebService进阶
    Java6开发WebService入门
    jsp session
    jsp中的request
    java文件上传下载
    javaweb文件上传下载
    struts2文件上传下载
    springMVC文件上传下载
  • 原文地址:https://www.cnblogs.com/pythonywy/p/12983952.html
Copyright © 2011-2022 走看看