zoukankan      html  css  js  c++  java
  • tensorflow 卷积神经网络预测手写 数字

    # coding=utf8

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    from PIL import Image

    def imageprepare(file_name):
    """
    This function returns the pixel values.
    The imput is a png file location.
    """
    #file_name='d:/ddd.png'#导入自己的图片地址
    #in terminal 'mogrify -format png *.jpg' convert jpg to png
    im = Image.open(file_name).convert('L')
    im.show()
    im = im.resize((28, 28))
    print(im)


    im.save("d:/log/sample.png")
    #plt.imshow(im)
    # plt.show()
    tv = list(im.getdata()) #get pixel values

    print(type(tv))

    #normalize pixels to 0 and 1. 0 is pure white, 1 is pure black.
    tva = [ ((255-x)*1.0)/255.0 for x in tv]
    print(type(tva))
    return tva

    # 产生随机变量,符合 normal 分布
    # 传递 shape 就可以返回weight和bias的变量
    def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


    def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


    # 定义2维的 convolutional 图层
    def conv2d(x, W):
    # stride [1, x_movement, y_movement, 1]
    # Must have strides[0] = strides[3] = 1
    # strides 就是跨多大步抽取信息
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


    # 定义 pooling
    def max_pool_2x2(x):
    # stride [1, x_movement, y_movement, 1]
    # 用pooling对付跨步大丢失信息问题
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


    # 读取数据
    mnist = input_data.read_data_sets("D:/MNIST_data", one_hot=True)

    # 为输入图像和目标输出类别创建节点,来开始构建计算图。x和y是占位符
    x = tf.placeholder("float", shape=[None, 784]) # 784=28x28
    y_ = tf.placeholder("float", shape=[None, 10])

    '''1. conv1 layer'''
    # 把x_image的厚度1加厚变成了32
    W_conv1 = weight_variable([5, 5, 1, 32]) # patch 5x5, in size 1, out size 32
    b_conv1 = bias_variable([32])
    x_image = tf.reshape(x, [-1, 28, 28, 1]) # 最后一个1表示数据是黑白的

    #conv1 第一层卷积
    conv1 = conv2d(x_image, W_conv1)

    # 构建第一个convolutional层,然后加一个非线性化的处理relu 计算激活函数relu,即max(features, 0)。即将矩阵中每行的非最大值置0。
    h_conv1 = tf.nn.relu(conv1 + b_conv1) # output size 28x28x32

    # 经过pooling后,长宽缩小为14x14
    h_pool1 = max_pool_2x2(h_conv1) # output size 14x14x32

    '''2. conv2 layer'''
    # 把厚度32加厚变成了64
    W_conv2 = weight_variable([5, 5, 32, 64]) # patch 5x5, in size 32, out size 64
    b_conv2 = bias_variable([64])
    # 构建第二个convolutional层
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
    # 经过pooling后,长宽缩小为7x7
    h_pool2 = max_pool_2x2(h_conv2) # output size 7x7x64

    '''3. func1 layer'''
    # 变成1024
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    # [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
    # 把pooling后的结果变平
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

    keep_prob = tf.placeholder("float")


    #Dropout就是在不同的训练过程中随机扔掉一部分神经元,防止过拟合
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    '''4. func2 layer'''
    # 最后一层,输入1024,输出size 10,用 softmax 计算概率进行分类的处理
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    # 向量化后的图片x和权重矩阵W相乘,加上偏置b,然后计算每个分类的softmax概率值。
    y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

    # 损失函数定义为交叉熵
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
    # 最梯度下降法让交叉熵下降,步长为0.01
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # 3333333333 test accuracy 0.9922
    # train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)
    # 计算分类的准确率,tf.equal 来检测我们的预测是否真实标签匹配
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    # 计算出匹配结果correct_prediction的平均值为,如[1,0,1,1]为0.75 tf.cast 数据格式转换
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

    # 创建一个Saver对象,选择性保存变量或者模型。
    #训练
    saver = tf.train.Saver()

    with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i % 100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
    x: batch[0], y_: batch[1], keep_prob: 1.0})
    print("step %d, training accuracy %g" % (i, train_accuracy))
    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

    # 输出最终模型在测试集上的准确率
    print("test accuracy %g" % accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

    # 保存模型到model.ckpt
    save_path = saver.save(sess, "model/model.ckpt")
    print("Model saved in file: ", save_path)

    prediction=tf.argmax(y_conv,1)

    predint=prediction.eval(feed_dict={x: [result],keep_prob: 1.0}, session=sess)

    print("result =", predint)

    """

    #测试
    result = imageprepare('d:/ddd.png')


    saver = tf.train.Saver()
    with tf.Session() as sess:
    # 读取模型
    saver.restore(sess, "model/model.ckpt")
    print("Model restored.")
    print("test accuracy %g" % accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
    prediction=tf.argmax(y_conv,1)

    predint=prediction.eval(feed_dict={x: [result],keep_prob: 1.0}, session=sess)

    print("result =", predint)

    """

  • 相关阅读:
    Mrrobot靶机渗透实战-vuluhub系列(六)
    Evilscience靶机渗透实战-vulnhub系列(五)
    raven靶机实战(linux-udf提权)-vuluhub系列(四)
    XXE靶机实战-vuluhub系列(三)
    Library靶机cookie注入-vuluhub系列(二)
    nodejs 搭建 RESTful API 服务器的常用包及其简介
    webpack分离第三方库(CommonsChunkPlugin并不是分离第三方库的好办法DllPlugin科学利用浏览器缓存)
    react 热替换 ([HMR])
    React-Router 4 的新玩意儿
    nodejs爬虫
  • 原文地址:https://www.cnblogs.com/pzf9266/p/cnn.html
Copyright © 2011-2022 走看看