1.选一个自己感兴趣的主题(所有人不能雷同)。
因为不能雷同,所以就找了没人做的,找了一个小说网站。

2.用python 编写爬虫程序,从网络上爬取相关主题的数据。
导入相关类
import requests from bs4 import BeautifulSoup import jieba
获取详细页面的标题和介绍


def getNewDetail(novelUrl): #获取详细页面方法
novelDetail = {}
res = requests.get(novelUrl)
res.encoding = 'utf-8'
soup = BeautifulSoup(res.text, 'html.parser')
novelDetail['title'] = soup.select(".title")[0].select("a")[0].text #小说名
novelDetail['intro'] = soup.select(".info")[0].text #小说介绍
num = soup.select(".num")[0].text #小说数量统计
novelDetail['hit'] = num[num.find('总点击:'):num.find('总人气:')].lstrip('总点击:') #总点击次数
# print(novelDetail['title'])
return novelDetail
获取一个页面的所有列表
def getListPage(pageUrl): #获取一个页面的所有小说列表
novelList = []
res = requests.get(pageUrl)
res.encoding = 'utf-8'
soup = BeautifulSoup(res.text, 'html.parser')
for novel in soup.select('.book'):
# if len(novel.select('.news-list-title')) > 0:
novelUrl = novel.select('a')[0].attrs['href'] # URL
novelList.append(getNewDetail(novelUrl))
return novelList
计算网站的小说总数

def getPageN(url): #计算网站的小说总数
res = requests.get(url)
res.encoding = 'utf-8'
soup = BeautifulSoup(res.text, 'html.parser')
num = soup.select(".red2")[2].text
n = int(num[num.find('云起书库'):num.find('本')].lstrip('云起书库'))//30+1
return n
获取所有数据并分别写入TXT,title.txt和intro.txt
网站的第一页通常都是分开的网址,所以要分开爬数据



url = 'http://yunqi.qq.com/bk/so2/n30p'
novelTotal = []
novelTotal.extend(getListPage(url))
n = getPageN(url)
for i in range(2, 3):
pageUrl = 'http://yunqi.qq.com/bk/so2/n30p{}.html'.format(i)
novelTotal.extend(getListPage(pageUrl))
writeFile("title.txt",novelTotal,"title")
writeFile("intro.txt",novelTotal,"intro")
3.对爬了的数据进行文本分析,生成词云。
file=open('intro.txt','r',encoding='utf-8')
text=file.read()
file.close()
p = {",","。",":","“","”","?"," ",";","!",":","*","、",")","的","她","了","他","是","
","我","你","不","人","也","】","…","啊","就","在","要","都","和","【","被","却","把","说","男","对","小","好","一个","着","有","吗","什么","上","又","还","自己","个","中","到","前","大"}
# for i in p:
# text = text.replace(i, " ")
t = list(jieba.cut_for_search(text))
count = {}
wl = (set(t) - p)
# print(wl)
for i in wl:
count[i] = t.count(i)
# print(count)
cl = list(count.items())
cl.sort(key=lambda x: x[1], reverse=True)
print(cl)
f = open('wordCount.txt', 'a',encoding="utf-8")
for i in range(20):
f.write(cl[i][0] + '' + str(cl[i][1]) + '
')
f.close()
from PIL import Image, ImageSequence
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator
font = r'C:WindowsFontssimhei.TTF' # 引入字体
# 读取背景图片
image = Image.open('./labixiaoxin.jpg')
i = np.array(image)
wc = WordCloud(font_path=font, # 设置字体
background_color='White',
mask=i, # 设置背景图片,背景是蜡笔小新
max_words=200)
wc.generate_from_frequencies(count)
image_color = ImageColorGenerator(i) # 绘制词云图
plt.imshow(wc)
plt.axis("off")
plt.show()


4.对文本分析结果进行解释说明。
由于是小说,所以当下小说见得多的都是一些仙侠或者言情小说,例如什么霸道总裁什么的,所以描述的都一般是男人女人的,由此也可见大家都小说的爱好偏向以及作者创作的类型,选对读者的兴趣的话就能更受欢迎
5.写一篇完整的博客,描述上述实现过程、遇到的问题及解决办法、数据分析思想及结论。
遇到的问题及解决方案
1.对网站的规律以及元素审阅的分析
一般是先有开发者工具审阅元素的class,有时候会有一些元素是不能直接获取的,这时候就需要用老师讲过的刷新查看网站发出的请求,通常一些元素是在script里显示的,
这时候就可以查看请求script得到网页不能直接获取的那些信息。
2.在导入wordcloud这个包的时候,会遇到很多问题
首先通过使用pip install wordcloud这个方法在全局进行包的下载,可是最后会报错误error: Microsoft Visual C++ 14.0 is required. Get it with “Microsoft Visual C++ Build Tools”: http://landinghub.visualstudio.com/visual-cpp-build-tools
这需要我们去下载VS2017中的工具包,但是网上说文件较大,所以放弃。
之后尝试去https://www.lfd.uci.edu/~gohlke/pythonlibs/#wordcloud下载whl文件,然后安装。

下载对应的python版本进行安装,如我的就下载wordcloud-1.4.1-cp36-cp36m-win32.whl,wordcloud-1.4.1-cp36-cp36m-win_amd64
两个文件都放到项目目录中,两种文件都尝试安装
通过cd到这个文件的目录中,通过pip install wordcloud-1.4.1-cp36-cp36m-win_amd64,进行导入
但是两个尝试后只有win32的能导入,64位的不支持,所以最后只能将下好的wordcloud放到项目lib中,在Pycharm中import wordcloud,最后成功
6.最后提交爬取的全部数据、爬虫及数据分析源代码。
以下是完整的代码
import requests
from bs4 import BeautifulSoup
import jieba
def getNewDetail(novelUrl): #获取详细页面方法
novelDetail = {}
res = requests.get(novelUrl)
res.encoding = 'utf-8'
soup = BeautifulSoup(res.text, 'html.parser')
novelDetail['title'] = soup.select(".title")[0].select("a")[0].text #小说名
novelDetail['intro'] = soup.select(".info")[0].text #小说介绍
num = soup.select(".num")[0].text #小说数量统计
novelDetail['hit'] = num[num.find('总点击:'):num.find('总人气:')].lstrip('总点击:') #总点击次数
# print(novelDetail['title'])
return novelDetail
def getListPage(pageUrl): #获取一个页面的所有小说列表
novelList = []
res = requests.get(pageUrl)
res.encoding = 'utf-8'
soup = BeautifulSoup(res.text, 'html.parser')
for novel in soup.select('.book'):
# if len(novel.select('.news-list-title')) > 0:
novelUrl = novel.select('a')[0].attrs['href'] # URL
novelList.append(getNewDetail(novelUrl))
return novelList
def getPageN(url): #计算网站的小说总数
res = requests.get(url)
res.encoding = 'utf-8'
soup = BeautifulSoup(res.text, 'html.parser')
num = soup.select(".red2")[2].text
n = int(num[num.find('云起书库'):num.find('本')].lstrip('云起书库'))//30+1
return n
def writeFile(file,novelTotal,key): #将数据写入txt
f = open(file, "a", encoding="utf-8")
for i in novelTotal:
f.write(str(i[key])+"
")
f.close()
# newsUrl = '''http://yunqi.qq.com/bk/so2/n30p'''
# getListPage(newsUrl)
url = 'http://yunqi.qq.com/bk/so2/n30p'
novelTotal = []
novelTotal.extend(getListPage(url))
n = getPageN(url)
for i in range(2, 3):
pageUrl = 'http://yunqi.qq.com/bk/so2/n30p{}.html'.format(i)
novelTotal.extend(getListPage(pageUrl))
writeFile("title.txt",novelTotal,"title")
writeFile("intro.txt",novelTotal,"intro")
file=open('intro.txt','r',encoding='utf-8')
text=file.read()
file.close()
p = {",","。",":","“","”","?"," ",";","!",":","*","、",")","的","她","了","他","是","
","我","你","不","人","也","】","…","啊","就","在","要","都","和","【","被","却","把","说","男","对","小","好","一个","着","有","吗","什么","上","又","还","自己","个","中","到","前","大"}
# for i in p:
# text = text.replace(i, " ")
t = list(jieba.cut_for_search(text))
count = {}
wl = (set(t) - p)
# print(wl)
for i in wl:
count[i] = t.count(i)
# print(count)
cl = list(count.items())
cl.sort(key=lambda x: x[1], reverse=True)
print(cl)
f = open('wordCount.txt', 'a',encoding="utf-8")
for i in range(20):
f.write(cl[i][0] + '' + str(cl[i][1]) + '
')
f.close()
from PIL import Image, ImageSequence
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator
font = r'C:WindowsFontssimhei.TTF' # 引入字体
# 读取背景图片
image = Image.open('./labixiaoxin.jpg')
i = np.array(image)
wc = WordCloud(font_path=font, # 设置字体
background_color='White',
mask=i, # 设置背景图片,背景是树叶
max_words=200)
wc.generate_from_frequencies(count)
image_color = ImageColorGenerator(i) # 绘制词云图
plt.imshow(wc)
plt.axis("off")
plt.show()