本文是基于Windows系统环境,学习和测试pandas模块:
Windows 10
PyCharm 2018.3.5 for Windows (exe)
python 3.6.8 Windows x86 executable installer
1. 读取csv/txt文件
读取txt文件,设置分隔符为‘,’,设置是否跳过第一行
import pandas as pd data = pandas.read_csv('test.txt', sep=',', header=None) print(data)
读取某一行
import pandas as pd data = pandas.read_csv('test.txt') index = 3 printf(data.ix[index]) # 读取第三行
读取某一列
import pandas as pd data = pandas.read_csv('test.txt') printf(data['ID']) # 读取属性名为ID的列,区分大小写
读取前5行
import pandas as pd data = pd.read_csv('user.csv') data.head(5) # 获取前5行
2. 基本操作
删除/选取某列含有特殊数值的行
import pandas as pd data = pd.read_csv('user.csv') print(data) #删除/选取某列含有特定数值的行 #data[data['A'].isin([1])] # 选取df1中A列包含数字1的行 data=data[~data['A'].isin([1])] # 通过~取反,选取不包含数字1的行 print(data)
删除/选取某行含有特殊数值的列
cols=[x for i,x in enumerate(df2.columns) if df2.iat[0,i]==3] #利用enumerate对row0进行遍历,将含有数字3的列放入cols中 print(cols) #df2=df2[cols] 选取含有特定数值的列 df2=df2.drop(cols,axis=1) #利用drop方法将含有特定数值的列删除 print(df2)
删除含有空值的行或列
import pandas as pd import numpy as np df1 = pd.DataFrame( [ [np.nan, 2, np.nan, 0], [3, 4, np.nan, 1], [np.nan, np.nan, np.nan, 5], [np.nan, 3, np.nan, 4] ],columns=list('ABCD')) print(df1) df2=df1.copy() df1['A']=df1['A'].fillna('null') #将df中A列所有空值赋值为'null' print(df1) df1=df1[~df1['A'].isin(['null'])] print(df1) #删除某行空值所在列 df2[0:1]=df2[0:1].fillna('null') print(df2) cols=[x for i,x in enumerate(df2.columns) if df2.iat[0,i]=='null'] print(cols) df2=df2.drop(cols,axis=1) print(df2)
3. 统计分析
打印统计详细信息
import pandas as pd data = pd.read_csv('user.csv') print (data.describe()) # 打印详细信息
统计中值
import pandas as pd data = pd.read_csv('user.csv') print (data['userAge'].median()) # 统计userAge这一列的中值
统计某一列不重复的值
import pandas as pd data = pd.read_csv('user.csv') print (data['userName'].unique()) #打印某一列不重复的值
4. 异常处理
中值填充缺失值
import pandas as pd data = pd.read_csv('user.csv') data['userAge'] = data['userAge'].fillna(data['userAge'].median())
原文:https://blog.csdn.net/qq_32599479/article/details/89361693