zoukankan      html  css  js  c++  java
  • python求极值点(波峰波谷)

    python求极值点主要用到scipy库。

    1. 首先可先选择一个函数或者拟合一个函数,这里选择拟合数据:np.polyfit

    import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    from scipy import signal   #滤波等
    
    xxx = np.arange(0, 1000)
    yyy = np.sin(xxx*np.pi/180)
    
    z1 = np.polyfit(xxx, yyy, 7) # 用7次多项式拟合
    p1 = np.poly1d(z1) #多项式系数
    print(p1) # 在屏幕上打印拟合多项式
    yvals=p1(xxx) 
    
    plt.plot(xxx, yyy, '*',label='original values')
    plt.plot(xxx, yvals, 'r',label='polyfit values')
    plt.xlabel('x axis')
    plt.ylabel('y axis')
    plt.legend(loc=4)
    plt.title('polyfitting')
    plt.show()

    得到的图形是:

    2. 求波峰值,也就是极大值,得到:signal.find_peaks,官方文档:https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html#scipy-signal-find-peaks。

    scipy.signal.find_peaks(x, height=None, threshold=None, distance=None, prominence=None, width=None, wlen=None, rel_height=0.5, plateau_size=None)
    
    Parameters:
    x : sequence. A signal with peaks.
    height : number or ndarray or sequence, optional. Required height of peaks. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required height.
    threshold : number or ndarray or sequence, optional. Required threshold of peaks, the vertical distance to its neighbouring samples. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required threshold.
    distance : number, optional. Required minimal horizontal distance (>= 1) in samples between neighbouring peaks. Smaller peaks are removed first until the condition is fulfilled for all remaining peaks.
    prominence : number or ndarray or sequence, optional. Required prominence of peaks. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required prominence.
    width : number or ndarray or sequence, optional. Required width of peaks in samples. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied, as the maximal required width.
    wlen : int, optional. Used for calculation of the peaks prominences, thus it is only used if one of the arguments prominence or width is given. See argument wlen in peak_prominences for a full description of its effects.
    rel_height : float, optional. Used for calculation of the peaks width, thus it is only used if width is given. See argument rel_height in peak_widths for a full description of its effects.
    plateau_size : number or ndarray or sequence, optional. Required size of the flat top of peaks in samples. Either a number, None, an array matching x or a 2-element sequence of the former. The first element is always interpreted as the minimal and the second, if supplied as the maximal required plateau size.
    New in version 1.2.0.
    # 极值
    num_peak_3 = signal.find_peaks(yvals, distance=10) #distance表极大值点的距离至少大于等于10个水平单位
    print(num_peak_3[0])
    print('the number of peaks is ' + str(len(num_peak_3[0])))
    plt.plot(xxx, yyy, '*',label='original values')
    plt.plot(xxx, yvals, 'r',label='polyfit values')
    plt.xlabel('x axis')
    plt.ylabel('y axis')
    plt.legend(loc=4)
    plt.title('polyfitting')
    for ii in range(len(num_peak_3[0])):
        plt.plot(num_peak_3[0][ii], yvals[num_peak_3[0][ii]],'*',markersize=10)
    plt.show()

    3. 在可导的情形下,可以求导来求极值点,同时得到极大值和极小值点:np.polyder

    yyyd = np.polyder(p1,1) # 1表示一阶导
    print(yyyd)

    此时:yyyd.r 即可就得导数为0的点,可以与上述的极大值点对应比较

    4. 直接函数分别求极大值和极小值:signal.argrelextrema 函数

    print(yvals[signal.argrelextrema(yvals, np.greater)]) #极大值的y轴, yvals为要求极值的序列
    print(signal.argrelextrema(yvals, np.greater))  #极大值的x轴
    peak_ind = signal.argrelextrema(yvals,np.greater)[0] #极大值点,改为np.less即可得到极小值点
    plt.plot(xxx, yyy, '*',label='original values')
    plt.plot(xxx, yvals, 'r',label='polyfit values')
    plt.xlabel('x axis')
    plt.ylabel('y axis')
    plt.legend(loc=4)
    plt.title('polyfitting')
    plt.plot(signal.argrelextrema(yvals,np.greater)[0],yvals[signal.argrelextrema(yvals, np.greater)],'o', markersize=10)  #极大值点
    plt.plot(signal.argrelextrema(yvals,np.less)[0],yvals[signal.argrelextrema(yvals, np.less)],'+', markersize=10)  #极小值点
    plt.show()

    ## ----- end ------

  • 相关阅读:
    【转载】线程数究竟设多少合理
    【转载】lvs为何不能完全替代DNS轮询
    接口测试考虑点
    隐式等待的两种写法
    邮件的操作
    Python列表排序 reverse、sort、sorted 操作方法
    兼容和适配的区别
    文件操作-oracle数据库
    初试线程-文件操作
    Selenium Grid分布式测试入门笔记
  • 原文地址:https://www.cnblogs.com/qi-yuan-008/p/12323710.html
Copyright © 2011-2022 走看看