You are an experienced Codeforces user. Today you found out that during your activity on Codeforces you have made y submissions, out of which x have been successful. Thus, your current success rate on Codeforces is equal to x / y.
Your favorite rational number in the [0;1] range is p / q. Now you wonder: what is the smallest number of submissions you have to make if you want your success rate to be p / q?
Input
The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of test cases.
Each of the next t lines contains four integers x, y, p and q (0 ≤ x ≤ y ≤ 109; 0 ≤ p ≤ q ≤ 109; y > 0; q > 0).
It is guaranteed that p / q is an irreducible fraction.
Hacks. For hacks, an additional constraint of t ≤ 5 must be met.
Output
For each test case, output a single integer equal to the smallest number of submissions you have to make if you want your success rate to be equal to your favorite rational number, or -1 if this is impossible to achieve.
Example
4
3 10 1 2
7 14 3 8
20 70 2 7
5 6 1 1
4
10
0
-1
Note
In the first example, you have to make 4 successful submissions. Your success rate will be equal to 7 / 14, or 1 / 2.
In the second example, you have to make 2 successful and 8 unsuccessful submissions. Your success rate will be equal to 9 / 24, or 3 / 8.
In the third example, there is no need to make any new submissions. Your success rate is already equal to 20 / 70, or 2 / 7.
In the fourth example, the only unsuccessful submission breaks your hopes of having the success rate equal to 1.
题目链接:
题意:给你4个整数,x,y,p,q,P/Q的范围是[0,1],让你求最小的提交数量b,其中a个提交成功使 ( x + a ) / ( y + b ) == p / q
我们设一个系数n,使
p*n=x+a
q*n=y+b
那么,
a=p*n-x
b=q*n-y
根据题意,我们知道a和b满足的条件为b>=a>=0
并且观察可知a和n呈正相关,那么我们要求最小的a,可以通过二分n来得到
根据题目的数据范围,n的二分区间为0~1e9
注意下-1的情况就行了。
细节看我的AC代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <map> #include <set> #include <vector> #define sz(a) int(a.size()) #define all(a) a.begin(), a.end() #define rep(i,x,n) for(int i=x;i<n;i++) #define repd(i,x,n) for(int i=x;i<=n;i++) #define pii pair<int,int> #define pll pair<long long ,long long> #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0) #define MS0(X) memset((X), 0, sizeof((X))) #define MSC0(X) memset((X), ' ', sizeof((X))) #define pb push_back #define mp make_pair #define fi first #define se second #define gg(x) getInt(&x) using namespace std; typedef long long ll; inline void getInt(int* p); const int maxn=1000010; const int inf=0x3f3f3f3f; /*** TEMPLATE CODE * * STARTS HERE ***/ int t; ll x,y,a,b; int main() { gbtb; cin>>t; while(t--) { cin>>x>>y>>a>>b; ll l=0; ll r=1e9; ll mid; ll ans=-1; while(l<=r) { mid=(l+r)>>1; ll a1=a*mid-x; ll a2=b*mid-y; if(a1>=0&&a2>=0&&(a1<=a2)) { ans=mid; r=mid-1; }else { l=mid+1; } } if(ans==-1) { cout<<-1<<endl; }else { cout<<b*ans-y<<endl; } } return 0; } inline void getInt(int* p) { char ch; do { ch = getchar(); } while (ch == ' ' || ch == ' '); if (ch == '-') { *p = -(getchar() - '0'); while ((ch = getchar()) >= '0' && ch <= '9') { *p = *p * 10 - ch + '0'; } } else { *p = ch - '0'; while ((ch = getchar()) >= '0' && ch <= '9') { *p = *p * 10 + ch - '0'; } } }