zoukankan      html  css  js  c++  java
  • AtCoder Regular Contest 092 2D Plane 2N Points AtCoder

    Problem Statement

     

    On a two-dimensional plane, there are N red points and N blue points. The coordinates of the i-th red point are (ai,bi), and the coordinates of the i-th blue point are (ci,di).

    A red point and a blue point can form a friendly pair when, the x-coordinate of the red point is smaller than that of the blue point, and the y-coordinate of the red point is also smaller than that of the blue point.

    At most how many friendly pairs can you form? Note that a point cannot belong to multiple pairs.

    Constraints

     

    • All input values are integers.
    • 1≤N≤100
    • 0≤ai,bi,ci,di<2N
    • a1,a2,…,aN,c1,c2,…,cN are all different.
    • b1,b2,…,bN,d1,d2,…,dN are all different.

    Input

     

    Input is given from Standard Input in the following format:

    N
    a1 b1
    a2 b2
    :
    aN bN
    c1 d1
    c2 d2
    :
    cN dN
    

    Output

     

    Print the maximum number of friendly pairs.

    Sample Input 1

     

    3
    2 0
    3 1
    1 3
    4 2
    0 4
    5 5
    

    Sample Output 1

     

    2
    

    For example, you can pair (2,0) and (4,2), then (3,1) and (5,5).

    Sample Input 2

     

    3
    0 0
    1 1
    5 2
    2 3
    3 4
    4 5
    

    Sample Output 2

     

    2
    

    For example, you can pair (0,0) and (2,3), then (1,1) and (3,4).

    Sample Input 3

     

    2
    2 2
    3 3
    0 0
    1 1
    

    Sample Output 3

     

    0
    

    It is possible that no pair can be formed.

    Sample Input 4

     

    5
    0 0
    7 3
    2 2
    4 8
    1 6
    8 5
    6 9
    5 4
    9 1
    3 7
    

    Sample Output 4

     

    5
    

    Sample Input 5

     

    5
    0 0
    1 1
    5 5
    6 6
    7 7
    2 2
    3 3
    4 4
    8 8
    9 9
    

    Sample Output 5

     

    4


    题意:
    给你n个红球,和n个蓝球。
    以及每一个球的坐标。,现在定义 如果红球的x和y坐标都比蓝球小,那么红球可以和蓝球匹配。
    一个球只能匹配一次。
    问这n对球最大可以组成多少个有效pair

    思路:
    先根据坐标关系建立是否能匹配的关系,然后用二分图最大匹配算法的匈牙利算法跑即可。
    不会的话可以去学习新算法。
    细节见代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <vector>
    #include <iomanip>
    #define ALL(x) (x).begin(), (x).end()
    #define rt return
    #define dll(x) scanf("%I64d",&x)
    #define xll(x) printf("%I64d
    ",x)
    #define sz(a) int(a.size())
    #define all(a) a.begin(), a.end()
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define gg(x) getInt(&x)
    #define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
    using namespace std;
    typedef long long ll;
    ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
    ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
    ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
    inline void getInt(int* p);
    const int maxn = 510;
    const int inf = 0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    int n;
    int a[maxn];
    int b[maxn];
    int c[maxn];
    int d[maxn];
    int can[maxn][maxn];
    int vis[maxn];
    int linker[maxn];
    bool dfs(int x)
    {
        repd(i, 1, n)
        {
            if (can[x][i] && vis[i] == 0)
            {
                vis[i] = 1;
                if (linker[i] == 0 || (dfs(linker[i])))// 没使用或者去寻找新的增广路
                {
                    linker[i] = x;
                    return 1;
                }
            }
        }
        return 0;
    }
    int main()
    {
        //freopen("D:\common_text\code_stream\in.txt","r",stdin);
        //freopen("D:\common_text\code_stream\out.txt","w",stdout);
        gbtb;
        cin >> n;
        repd(i, 1, n)
        {
            cin >> a[i] >> b[i];
        }
        repd(i, 1, n)
        {
            cin >> c[i] >> d[i];
        }
        repd(i, 1, n)
        {
            repd(j, 1, n)
            {
                if (a[i] < c[j] && b[i] < d[j])
                {
                    can[i][j] = 1;
                }
            }
        }
        int ans = 0;
        repd(i, 1, n)
        {
            memset(vis, 0, sizeof(vis));
            if (dfs(i))
            {
                ans++;
            }
        }
        cout << ans << endl;
        return 0;
    }
    
    inline void getInt(int* p) {
        char ch;
        do {
            ch = getchar();
        } while (ch == ' ' || ch == '
    ');
        if (ch == '-') {
            *p = -(getchar() - '0');
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 - ch + '0';
            }
        }
        else {
            *p = ch - '0';
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 + ch - '0';
            }
        }
    }
    本博客为本人原创,如需转载,请必须声明博客的源地址。 本人博客地址为:www.cnblogs.com/qieqiemin/ 希望所写的文章对您有帮助。
  • 相关阅读:
    mysql 导入CSV数据 [转]
    Linux用户态程序计时方式详解[转]
    [转] Bash脚本:怎样一行行地读文件(最好和最坏的方法)
    第二次作业
    软件工程原理与方法 第一次作业
    2017-02-19,周日整理
    2017-02-12,周日整理
    cnblogs,第一次博客纪念。
    堆和栈的区别(转过无数次的文章)
    Flash Player版本相关问题
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/10827472.html
Copyright © 2011-2022 走看看