zoukankan      html  css  js  c++  java
  • Codeforces Round #575 (Div. 3) B. Odd Sum Segments (构造,数学)

    B. Odd Sum Segments
    time limit per test3 seconds
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    You are given an array a consisting of n integers a1,a2,…,an. You want to split it into exactly k non-empty non-intersecting subsegments such that each subsegment has odd sum (i. e. for each subsegment, the sum of all elements that belong to this subsegment is odd). It is impossible to rearrange (shuffle) the elements of a given array. Each of the n elements of the array a must belong to exactly one of the k subsegments.

    Let's see some examples of dividing the array of length 5 into 3 subsegments (not necessarily with odd sums): [1,2,3,4,5] is the initial array, then all possible ways to divide it into 3 non-empty non-intersecting subsegments are described below:

    [1],[2],[3,4,5];
    [1],[2,3],[4,5];
    [1],[2,3,4],[5];
    [1,2],[3],[4,5];
    [1,2],[3,4],[5];
    [1,2,3],[4],[5].
    Of course, it can be impossible to divide the initial array into exactly k subsegments in such a way that each of them will have odd sum of elements. In this case print "NO". Otherwise, print "YES" and any possible division of the array. See the output format for the detailed explanation.

    You have to answer q independent queries.

    Input
    The first line contains one integer q (1≤q≤2⋅105) — the number of queries. Then q queries follow.

    The first line of the query contains two integers n and k (1≤k≤n≤2⋅105) — the number of elements in the array and the number of subsegments, respectively.

    The second line of the query contains n integers a1,a2,…,an (1≤ai≤109), where ai is the i-th element of a.

    It is guaranteed that the sum of n over all queries does not exceed 2⋅105 (∑n≤2⋅105).

    Output
    For each query, print the answer to it. If it is impossible to divide the initial array into exactly k subsegments in such a way that each of them will have odd sum of elements, print "NO" in the first line. Otherwise, print "YES" in the first line and any possible division of the array in the second line. The division can be represented as k integers r1, r2, ..., rk such that 1≤r1<r2<⋯<rk=n, where rj is the right border of the j-th segment (the index of the last element that belongs to the j-th segment), so the array is divided into subsegments [1;r1],[r1+1;r2],[r2+1,r3],…,[rk−1+1,n]. Note that rk is always n but you should print it anyway.

    Example
    inputCopy
    3
    5 3
    7 18 3 14 1
    5 4
    1 2 3 4 5
    6 2
    1 2 8 4 10 2
    outputCopy
    YES
    1 3 5
    NO
    NO

    题意:
    给你一个n个数的数组,让你分成k个部分,使每一部分的sum和是奇数
    思路:

    容易知道,想让sum和为奇数,这么这部分一定有奇数个奇数。

    所以想构造成k个部分的条件是 if((sum-k)%2==0) ( sum是奇数的个数)

    然后从后开始贪心的分成k个部分即可,

    本题坑点:要求最后一个r一定是 n 这里wa了好几次。

    细节见代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <vector>
    #include <iomanip>
    #define ALL(x) (x).begin(), (x).end()
    #define rt return
    #define dll(x) scanf("%I64d",&x)
    #define xll(x) printf("%I64d
    ",x)
    #define sz(a) int(a.size())
    #define all(a) a.begin(), a.end()
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define gg(x) getInt(&x)
    #define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
    using namespace std;
    typedef long long ll;
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
    inline void getInt(int* p);
    const int maxn=1000010;
    const int inf=0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
     
    int a[maxn];
    int n,k;
    int main()
    {
        //freopen("D:\common_text\code_stream\in.txt","r",stdin);
        //freopen("D:\common_textcode_stream\out.txt","w",stdout);
        int t;
        gg(t);
        while(t--)
        {
            gg(n);gg(k);
            int sum=0;
            repd(i,1,n)
            {
                gg(a[i]);
                a[i]%=2;
                sum+=a[i];
            }
            if(sum<k)
            {
                printf("NO
    ");
                continue;
            }
            if((sum-k)%2!=0)
            {
                printf("NO
    ");
                continue;
            }
            printf("YES
    ");
            std::vector<int> ans;
            for(int i=n;i>=1;i--)
            {
                if(k)
                {
                    if(a[i])
                    {
                        ans.push_back(i);
                        // printf("
                        // %d ",i);
                        k--;
                    }
                }
            }
            ans[0]=n;
            for(int i=sz(ans)-1;i>=0;--i)
            {
                printf("%d ",ans[i] );
            }
            printf("
    ");
     
            // cout<<endl;
        }
        
        
        
        return 0;
    }
     
    inline void getInt(int* p) {
        char ch;
        do {
            ch = getchar();
        } while (ch == ' ' || ch == '
    ');
        if (ch == '-') {
            *p = -(getchar() - '0');
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 - ch + '0';
            }
        }
        else {
            *p = ch - '0';
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 + ch - '0';
            }
        }
    }
    
    本博客为本人原创,如需转载,请必须声明博客的源地址。 本人博客地址为:www.cnblogs.com/qieqiemin/ 希望所写的文章对您有帮助。
  • 相关阅读:
    WCF如何通过契约加编码方式调用
    编码为multipart/form-data自定义类型(包括文件)如何自动绑定到webapi的action的参数里
    MSMQ消息队列
    使用windows服务和MSMQ和进行日志管理(解决高并发问题)
    二叉树的三种遍历方式
    go语言的3个包——strconv、os.Args、flag
    公钥、私钥、签名、数字证书的关系
    go语言实现单链表
    Go语言学习笔记(10)——错误处理示例
    go语言实现链式栈
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/11247855.html
Copyright © 2011-2022 走看看