zoukankan      html  css  js  c++  java
  • Codeforces Round #575 (Div. 3) B. Odd Sum Segments (构造,数学)

    B. Odd Sum Segments
    time limit per test3 seconds
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    You are given an array a consisting of n integers a1,a2,…,an. You want to split it into exactly k non-empty non-intersecting subsegments such that each subsegment has odd sum (i. e. for each subsegment, the sum of all elements that belong to this subsegment is odd). It is impossible to rearrange (shuffle) the elements of a given array. Each of the n elements of the array a must belong to exactly one of the k subsegments.

    Let's see some examples of dividing the array of length 5 into 3 subsegments (not necessarily with odd sums): [1,2,3,4,5] is the initial array, then all possible ways to divide it into 3 non-empty non-intersecting subsegments are described below:

    [1],[2],[3,4,5];
    [1],[2,3],[4,5];
    [1],[2,3,4],[5];
    [1,2],[3],[4,5];
    [1,2],[3,4],[5];
    [1,2,3],[4],[5].
    Of course, it can be impossible to divide the initial array into exactly k subsegments in such a way that each of them will have odd sum of elements. In this case print "NO". Otherwise, print "YES" and any possible division of the array. See the output format for the detailed explanation.

    You have to answer q independent queries.

    Input
    The first line contains one integer q (1≤q≤2⋅105) — the number of queries. Then q queries follow.

    The first line of the query contains two integers n and k (1≤k≤n≤2⋅105) — the number of elements in the array and the number of subsegments, respectively.

    The second line of the query contains n integers a1,a2,…,an (1≤ai≤109), where ai is the i-th element of a.

    It is guaranteed that the sum of n over all queries does not exceed 2⋅105 (∑n≤2⋅105).

    Output
    For each query, print the answer to it. If it is impossible to divide the initial array into exactly k subsegments in such a way that each of them will have odd sum of elements, print "NO" in the first line. Otherwise, print "YES" in the first line and any possible division of the array in the second line. The division can be represented as k integers r1, r2, ..., rk such that 1≤r1<r2<⋯<rk=n, where rj is the right border of the j-th segment (the index of the last element that belongs to the j-th segment), so the array is divided into subsegments [1;r1],[r1+1;r2],[r2+1,r3],…,[rk−1+1,n]. Note that rk is always n but you should print it anyway.

    Example
    inputCopy
    3
    5 3
    7 18 3 14 1
    5 4
    1 2 3 4 5
    6 2
    1 2 8 4 10 2
    outputCopy
    YES
    1 3 5
    NO
    NO

    题意:
    给你一个n个数的数组,让你分成k个部分,使每一部分的sum和是奇数
    思路:

    容易知道,想让sum和为奇数,这么这部分一定有奇数个奇数。

    所以想构造成k个部分的条件是 if((sum-k)%2==0) ( sum是奇数的个数)

    然后从后开始贪心的分成k个部分即可,

    本题坑点:要求最后一个r一定是 n 这里wa了好几次。

    细节见代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <vector>
    #include <iomanip>
    #define ALL(x) (x).begin(), (x).end()
    #define rt return
    #define dll(x) scanf("%I64d",&x)
    #define xll(x) printf("%I64d
    ",x)
    #define sz(a) int(a.size())
    #define all(a) a.begin(), a.end()
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define gg(x) getInt(&x)
    #define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
    using namespace std;
    typedef long long ll;
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
    inline void getInt(int* p);
    const int maxn=1000010;
    const int inf=0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
     
    int a[maxn];
    int n,k;
    int main()
    {
        //freopen("D:\common_text\code_stream\in.txt","r",stdin);
        //freopen("D:\common_textcode_stream\out.txt","w",stdout);
        int t;
        gg(t);
        while(t--)
        {
            gg(n);gg(k);
            int sum=0;
            repd(i,1,n)
            {
                gg(a[i]);
                a[i]%=2;
                sum+=a[i];
            }
            if(sum<k)
            {
                printf("NO
    ");
                continue;
            }
            if((sum-k)%2!=0)
            {
                printf("NO
    ");
                continue;
            }
            printf("YES
    ");
            std::vector<int> ans;
            for(int i=n;i>=1;i--)
            {
                if(k)
                {
                    if(a[i])
                    {
                        ans.push_back(i);
                        // printf("
                        // %d ",i);
                        k--;
                    }
                }
            }
            ans[0]=n;
            for(int i=sz(ans)-1;i>=0;--i)
            {
                printf("%d ",ans[i] );
            }
            printf("
    ");
     
            // cout<<endl;
        }
        
        
        
        return 0;
    }
     
    inline void getInt(int* p) {
        char ch;
        do {
            ch = getchar();
        } while (ch == ' ' || ch == '
    ');
        if (ch == '-') {
            *p = -(getchar() - '0');
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 - ch + '0';
            }
        }
        else {
            *p = ch - '0';
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 + ch - '0';
            }
        }
    }
    
    本博客为本人原创,如需转载,请必须声明博客的源地址。 本人博客地址为:www.cnblogs.com/qieqiemin/ 希望所写的文章对您有帮助。
  • 相关阅读:
    不用找了,比较全的signalR例子已经为你准备好了(2)---JqGrid 服务端刷新方式-注释详细-DEMO源码下载
    不用找了,比较全的signalR例子已经为你准备好了.
    26之前,26之后
    SSIS从理论到实战,再到应用(7)----常用的数据类型转换操作
    SSIS从理论到实战,再到应用(6)----SSIS的自带日志功能
    SSIS从理论到实战,再到应用(5)----流程控制之Foreach循环
    SSIS从理论到实战,再到应用(4)----流程控制之For循环
    SSIS从理论到实战,再到应用(3)----SSIS包的变量,约束,常用容器
    SSIS从理论到实战,再到应用(2)----SSIS包的控制流
    Android学习笔记(十二)BroadcastReceiver的有序广播和优先级
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/11247855.html
Copyright © 2011-2022 走看看