zoukankan      html  css  js  c++  java
  • The Preliminary Contest for ICPC Asia Nanjing 2019 B. super_log (广义欧拉降幂)

    In Complexity theory, some functions are nearly O(1)O(1), but it is greater then O(1)O(1). For example, the complexity of a typical disjoint set is O(nα(n))O(n**α(n)). Here α(n)α(n) is Inverse Ackermann Function, which growth speed is very slow. So in practical application, we often assume α(n) le 4α(n)≤4.

    However O(α(n))O(α(n)) is greater than O(1)O(1), that means if nn is large enough, α(n)α(n) can greater than any constant value.

    Now your task is let another slowly function loglog∗ xx* reach a constant value bb. Here loglog∗ is iterated logarithm function, it means “the number of times the logarithm function iteratively applied on xx* before the result is less than logarithm base aa”.

    Formally, consider a iterated logarithm function log_{a}^loga*∗img

    Find the minimum positive integer argument xx, let log_{a}^* (x) ge blog**a∗(x)≥b. The answer may be very large, so just print the result xx after mod mm.

    Input

    The first line of the input is a single integer T(Tle 300)T(T≤300) indicating the number of test cases.

    Each of the following lines contains 33 integers aa , bb and mm.

    1 le a le 10000001≤a≤1000000

    0 le b le 10000000≤b≤1000000

    1 le m le 10000001≤m≤1000000

    Note that if a==1, we consider the minimum number x is 1.

    Output

    For each test case, output xx mod mm in a single line.

    Hint

    In the 4-th4−t**h query, a=3a=3 and b=2b=2. Then log_{3}^* (27) = 1+ log_{3}^* (3) = 2 + log_{3}^* (1)=3+(-1)=2 ge blog3∗(27)=1+log3∗(3)=2+log3∗(1)=3+(−1)=2≥b, so the output is 2727 mod 16 = 1116=11.

    样例输入复制

    5
    2 0 3
    3 1 2
    3 1 100
    3 2 16
    5 3 233
    

    样例输出复制

    1
    1
    3
    11
    223
    

    本题为 CF-906D 题目的更改版,请进我这篇博客学习对应题目:

    https://www.cnblogs.com/qieqiemin/p/11478970.html

    本题只需要改一下读入,加一个对幂次为0的特判即可通过。

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <vector>
    #include <iomanip>
    #define ALL(x) (x).begin(), (x).end()
    #define sz(a) int(a.size())
    #define all(a) a.begin(), a.end()
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define gg(x) getInt(&x)
    #define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
    using namespace std;
    typedef long long ll;
    ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
    ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
    inline void getInt(int* p);
    const int maxn = 1000010;
    const int inf = 0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    ll mod(ll x, ll m)
    {
        return x >= m ? x % m + m : x;
    }
    ll powmod(ll a, ll b, ll MOD)
    {
        ll ans = 1;
        while (b)
        {
            if (b % 2)
                ans = mod(ans * a, MOD);
            // ans = ans * a % MOD;
            // a = a * a % MOD;
            a = mod(a * a, MOD);
            b /= 2;
        }
        return ans;
    }
    
    ll m;
    int n;
    int q;
    ll a;
    map<ll, ll> vis;
    ll euler(ll n) { //log(n)时间内求一个数的欧拉值
        if (vis.count(n))
        {
            return vis[n];
        }
        ll ans = n;
        for (ll i = 2; i * i <= n; i++) {
            if (n % i == 0)
            {
                ans -= ans / i;
                while (n % i == 0) n /= i;
            }
        }
        if (n > 1) ans -= ans / n;
        vis[n] = ans;
        return ans;
    }
    
    ll solve(int l, int r, ll m)
    {
        if (l == r || m == 1)
            return mod(a, m);
        return powmod(a, solve(l + 1, r, euler(m)), m);
    }
    int main()
    {
        //freopen("D:\common_text\code_stream\in.txt","r",stdin);
        //freopen("D:\common_text\code_stream\out.txt","w",stdout);
        scanf("%d", &q);
        int l, r;
        while (q--)
        {
            scanf("%d %d %lld", &a, &r, &m);
            if (r == 0)
            {
                printf("%lld
    ", 1 % m );
                continue;
            }
            printf("%lld
    ", solve(1, r, m) % m);
        }
    
    
    
        return 0;
    }
    
    inline void getInt(int* p) {
        char ch;
        do {
            ch = getchar();
        } while (ch == ' ' || ch == '
    ');
        if (ch == '-') {
            *p = -(getchar() - '0');
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 - ch + '0';
            }
        }
        else {
            *p = ch - '0';
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 + ch - '0';
            }
        }
    }
    
    
    
    
    
    本博客为本人原创,如需转载,请必须声明博客的源地址。 本人博客地址为:www.cnblogs.com/qieqiemin/ 希望所写的文章对您有帮助。
  • 相关阅读:
    Java Lambda表达式初探
    解开lambda最强作用的神秘面纱
    常用正则表达式
    js,java时间处理
    Java 8新特性探究(二)深入解析默认方法
    Java 8里面lambda的最佳实践
    lambda表达式和闭包
    Lambda语法篇
    lambda表达式
    依赖注入和控制反转的理解
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/11478985.html
Copyright © 2011-2022 走看看