zoukankan      html  css  js  c++  java
  • [Codeforces Round #677 (Div. 3)] F. Zero Remainder Sum (DP)

    [Codeforces Round #677 (Div. 3)] F. Zero Remainder Sum (DP)

    题目链接:https://codeforces.com/problemset/problem/1433/F

    题面:

    题意:

    给你一个(n imes m) 的矩阵,每一行你可以最多选择(leftlfloorfrac{m}{2} ight floor) 个数,你需要计算出选择哪些数使其sum和是(mathit k) 的倍数,且sum和最大。

    思路:

    考虑动态规划来解决:

    对于每一行单独处理:

    (dp[i][j]) 代表当前行中选择了(mathit i)个数,sum和对(mathit k)取模后的结果为(mathit j)的最大求和值。

    为了让同一个数不被多次选择,我们需要用一个相同的额外数组来滚动解决。

    初始时(dp[0][0]=0)

    从第(mathit i) 行转移到(i+1)行时 枚举(win[1,m/2],zin[0,k-1]),:(dp1[0][z] = max(dp1[0][z], dp2[w][z]);)

    最后(dp1[0][0])就是答案。

    代码:

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <bits/stdc++.h>
    #define ALL(x) (x).begin(), (x).end()
    #define sz(a) int(a.size())
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define chu(x)  if(DEBUG_Switch) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
    #define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
    #define du2(a,b) scanf("%d %d",&(a),&(b))
    #define du1(a) scanf("%d",&(a));
    using namespace std;
    typedef long long ll;
    ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
    ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
    ll powmod(ll a, ll b, ll MOD) { if (a == 0ll) {return 0ll;} a %= MOD; ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
    ll poww(ll a, ll b) { if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a ;} a = a * a ; b >>= 1;} return ans;}
    void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    inline long long readll() {long long tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') { fh = -1; } c = getchar();} while (c >= '0' && c <= '9') { tmp = tmp * 10 + c - 48, c = getchar(); } return tmp * fh;}
    inline int readint() {int tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') { fh = -1; } c = getchar();} while (c >= '0' && c <= '9') { tmp = tmp * 10 + c - 48, c = getchar(); } return tmp * fh;}
    void pvarr_int(int *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%d%c", arr[i], i == n ? '
    ' : ' ');}}
    void pvarr_LL(ll *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%lld%c", arr[i], i == n ? '
    ' : ' ');}}
    const int maxn = 1000010;
    const int inf = 0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    #define DEBUG_Switch 0
    int n, m, k;
    int a[72][72];
    int dp1[72][72];
    int dp2[72][72];
    
    int main()
    {
    #if DEBUG_Switch
        freopen("D:\code\input.txt", "r", stdin);
    #endif
        //freopen("D:\code\output.txt","w",stdout);
        n = readint(); m = readint(); k = readint();
        repd(i, 1, n) {
            repd(j, 1, m) {
                a[i][j] = readint();
            }
        }
        repd(i, 0, m) {
            repd(j, 0, k) {
                dp1[i][j] = -inf;
            }
        }
        dp1[0][0] = 0;
        repd(i, 1, n) {
            repd(j, 1, m) {
                repd(w, 0, m / 2) {
                    repd(z, 0, k - 1) {
                        dp2[w][z] = dp1[w][z];
                    }
                }
                repd(w, 1, m / 2) {
                    repd(z, 0, k - 1) {
                        dp1[w][z] = max(dp1[w][z], dp2[w - 1][(z + a[i][j]) % k] + a[i][j]);
                    }
                }
            }
            repd(w, 0, m / 2) {
                repd(z, 0, k - 1) {
                    dp2[w][z] = dp1[w][z];
                }
            }
            repd(z, 0, k - 1) {
                repd(w, 0, m / 2) {
                    dp1[0][z] = max(dp1[0][z], dp2[w][z]);
                }
            }
        }
        printf("%d
    ", dp1[0][0] );
        return 0;
    }
    
    
    
    
  • 相关阅读:
    分布式数据库数据一致性的原理、与技术实现方案
    分布式系统全局唯一ID简介、特点、5种生成方式
    分布式Session共享的4类技术方案,与优劣势比较
    深入理解分布式事务
    分布式事务的解决方案,以及原理、总结
    调研 | 5种分布式事务解决方案优缺点对比
    网页大文件上传支持断点上传
    WEB大文件上传支持断点上传
    http大文件上传支持断点上传
    B/S大文件上传支持断点上传
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/13870216.html
Copyright © 2011-2022 走看看