zoukankan      html  css  js  c++  java
  • CF-gym/101810 AJK题解

    CF-gym/101810 AJK题解

    [ACM International Collegiate Programming Contest, Amman Collegiate Programming Contest (2018)]

    比赛地址:https://codeforces.com/gym/101810

    A. Careful Thief(双指针)

    思路:

    小偷最优的取法一定是:

    黑色的这两种可能之一。

    我们设小偷选择的区间为(Se).

    即:

    要么(Se)的起点和一个建筑物区间的起点相等,

    要么(Se)的终点和一个建筑物区间的终点相等。(可使用贪心思想轻易证明。)

    所以我们只需要将建筑区间排序之后,

    用双指针正反分别枚举小偷选择的区间起点和终点,同时维护以下答案即可。

    代码:
    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<iomanip>
    #include<sstream>
    #include<cstdio>
    #include<string>
    #include<vector>
    #include<bitset>
    #include<queue>
    #include<cmath>
    #include<stack>
    #include<set>
    #include<map>
    #define rep(i,x,n) for(int i=x;i<=n;i++)
    #define per(i,n,x) for(int i=n;i>=x;i--)
    #define sz(a) int(a.size())
    #define rson mid+1,r,p<<1|1
    #define pii pair<pair<ll,ll>,ll>
    #define lson l,mid,p<<1
    #define ll long long
    #define pb push_back
    #define mp make_pair
    #define se second
    #define fi first
    using namespace std;
    const double eps=1e-8;
    const int mod=1e9+7;
    const int N=1e5+10;
    const int inf=1e9;
    int T;
    int m;
    ll k;
    struct ppo{
    	ll l,r,v;
    	bool operator<(const ppo &o) const{
    		return l<o.l;
    	}
    }a[N];
    int main(){
    	//ios::sync_with_stdio(false);
    	//freopen("in","r",stdin);
    	scanf("%d",&T);
    	while(T--){
    		scanf("%d%lld",&m,&k);
    		rep(i,1,m){
    			scanf("%lld%lld%lld",&a[i].l,&a[i].r,&a[i].v);
    		}
    		sort(a+1,a+m+1);
    		int now=1;
    		ll sum=0,ans=0;
    		rep(i,1,m){
    		    now=max(now,i);
    			while(a[now].r-a[i].l+1<=k&&now<=m){
    				sum+=(a[now].r-a[now].l+1)*a[now].v;
    				++now;
    			}
    			if(now<=m&&a[now].l-a[i].l+1<=k){
    				ans=max(ans,sum+(k-(a[now].l-a[i].l))*a[now].v);
    			}else ans=max(ans,sum);
    			if(k>=a[i].r-a[i].l+1) sum-=(a[i].r-a[i].l+1)*a[i].v;
    			else sum-=k*a[i].v;
    		}
    		sum=0,now=m;
    		per(i,m,1){
    		    now=min(now,i);
    			while(a[i].r-a[now].l+1<=k&&now>=1){
    				sum+=(a[now].r-a[now].l+1)*a[now].v;
    				--now;
    			}
    			if(now>=1&&a[i].r-a[now].r+1<=k){
    				ans=max(ans,sum+(k-(a[i].r-a[now].r))*a[now].v);
    			}else ans=max(ans,sum);
    			if(k>=a[i].r-a[i].l+1) sum-=(a[i].r-a[i].l+1)*a[i].v;
    			else sum-=k*a[i].v;
    		}
    		printf("%lld
    ",ans);
    	}
    	return 0;
    }
    

    J. T-Shirts Dilemma(二进制处理)

    对于

    每个数(num)

    想找到一个最大的(x,xle num)使其(x| (x+1)|(x+2)|dots |num>num)

    如果存在这样一个数(mathit x),那么(num)的二进制表示中的最低位的一个(mathit 0),(mathit x)在该位置上必须为(mathit 1)

    例如(num=11011101,x=11011111)

    (num=11000,x=11001)

    我们记:(x=F(num))

    那么当以(num)为最高价格能选择的区间即为([x+1,num]),

    同时可以证明的是:

    对于任意一个(yin [x+1,num],xle F(y)),忽略这些(mathit y)并不影响答案。

    所以我们在进行迭代的时候可以直接令(num=F(num))即可,然后维护最大值的区间长度作为答案。

    接下来讲解(F(num))怎么计算,

    我们对unsigned long long 类型的(num)取反(二进制的每一位flip)得到(val)

    (F(num)=num-lowbit(val))

    (lowbit())就是树状数组中常用的那个函数,即求一个数二进制中的最低位1的数值。

    (lowbit(x)= -x & x)

    注意求区间的时候,如果(F(num)<a),需要将取a作为区间的左端点。

    代码:
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <bits/stdc++.h>
    #define ALL(x) (x).begin(), (x).end()
    #define sz(a) int(a.size())
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define chu(x)  if(DEBUG_Switch) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
    #define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
    #define du2(a,b) scanf("%d %d",&(a),&(b))
    #define du1(a) scanf("%d",&(a));
    using namespace std;
    typedef long long ll;
    ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
    ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
    ll powmod(ll a, ll b, ll MOD) { if (a == 0ll) {return 0ll;} a %= MOD; ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
    ll poww(ll a, ll b) { if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a ;} a = a * a ; b >>= 1;} return ans;}
    void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    inline long long readll() {long long tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') fh = -1; c = getchar();} while (c >= '0' && c <= '9') tmp = tmp * 10 + c - 48, c = getchar(); return tmp * fh;}
    inline int readint() {int tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') fh = -1; c = getchar();} while (c >= '0' && c <= '9') tmp = tmp * 10 + c - 48, c = getchar(); return tmp * fh;}
    void pvarr_int(int *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%d%c", arr[i], i == n ? '
    ' : ' ');}}
    void pvarr_LL(ll *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%lld%c", arr[i], i == n ? '
    ' : ' ');}}
    const int maxn = 1000010;
    const int inf = 0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    #define DEBUG_Switch 0
    typedef unsigned long long ull;
    ull lowbit(ull x)
    {
        return -x & x;
    }
    int main()
    {
    #if DEBUG_Switch
        freopen("C:\code\input.txt", "r", stdin);
    #endif
        //freopen("C:\code\output.txt","w",stdout);
        int t;
        t = readint();
        while (t--)
        {
            ull a = readll();
            ull b = readll();
            ull v = readll();
            ull ans = 0;
            // chu(ans);
            ull r = v;
            ull l;
            int id1, id2;
            for (int i = 0; i <= 62; ++i)
            {
                if ((1ll << i)&v)
                    id1 = i;
                if ((1ll << i)&b)
                    id2 = i;
            }
            if (id1 > id2)
            {
                printf("%llu
    ", b - a + 1 );
                continue;
            }
            if (v < a)
            {
                printf("0
    ");
                continue;
            }
            while (1)
            {
                ull x = lowbit(~r);
                if (x > r)
                    l = a - 1;
                else
                    l = r - x;
                if(min(r, b)>=max(l, a - 1))
                    ans = max(ans, min(r, b) - max(l, a - 1));
                r = l;
                if (r < a)
                    break;
            }
            // chu(ans);
            printf("%llu
    ", ans );
        }
    
        return 0;
    }
    
    

    K. League of Demaciasi

    思路:

    我们枚举每一个士兵作为激光炮的边界:

    • 对于每一个士兵,根据它的位置确定和原点的距离,如果距离大于(z/2),那么该士兵就可以作激光炮的左右边界,那么让把激光炮的左边界恰好靠在该士兵的位置上即可(右边界也行,同质的,选择其一即可)。
    • 否则只能作激光炮的下边界。

    看图表示一个左边界靠在点(mathit D)上的激光炮的左下角部分图,可以明显的发现,当角度( heta_1)确定后,因为向量(mathit u)的模长为(z/2),即可表示出一个唯一的激光炮。

    角度( heta_1)也很好求,因为(|DE_1|)很好求得,从而可以得到(angle DE_1E)( heta_2)(E_1D)的斜率角,

    所以:( heta_1= heta_2+ang DE_1E)

    判断一个点是否在激光炮内

    满足以下两个条件即可:

    1、在(E_1E)上的投影的绝对值不大于(Z/2)

    2、在下边界的右方,即(0le overrightarrow{E_1D} imesoverrightarrow{E_1E})

    代码:
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <bits/stdc++.h>
    #define ALL(x) (x).begin(), (x).end()
    #define sz(a) int(a.size())
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define chu(x)  if(DEBUG_Switch) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
    #define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
    #define du2(a,b) scanf("%d %d",&(a),&(b))
    #define du1(a) scanf("%d",&(a));
    using namespace std;
    typedef long long ll;
    ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
    ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
    ll powmod(ll a, ll b, ll MOD) { if (a == 0ll) {return 0ll;} a %= MOD; ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
    ll poww(ll a, ll b) { if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a ;} a = a * a ; b >>= 1;} return ans;}
    void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    inline long long readll() {long long tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') fh = -1; c = getchar();} while (c >= '0' && c <= '9') tmp = tmp * 10 + c - 48, c = getchar(); return tmp * fh;}
    inline int readint() {int tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') fh = -1; c = getchar();} while (c >= '0' && c <= '9') tmp = tmp * 10 + c - 48, c = getchar(); return tmp * fh;}
    void pvarr_int(int *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%d%c", arr[i], i == n ? '
    ' : ' ');}}
    void pvarr_LL(ll *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%lld%c", arr[i], i == n ? '
    ' : ' ');}}
    const int maxn = 10010;
    const int inf = 0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    #define DEBUG_Switch 0
    // const double eps = 1e-6;
    int sgn(double x)
    {
        if (fabs(x) < eps)return 0;
        if (x < 0)return -1;
        else return 1;
    }
    struct Point
    {
        double x, y;
        Point() {}
        Point(double _x, double _y)
        {
            x = _x; y = _y;
        }
        Point operator -(const Point &b)const
        {
            return Point(x - b.x, y - b.y);
        }
        Point operator +(const Point &b)const
        {
            return Point(x + b.x, y + b.y);
        }
        void operator /=(const double &b)
        {
            x /= b;
            y /= b;
        }
        //叉积
        double operator ^(const Point &b)const
        {
            return x * b.y - y * b.x;
        }
        //点积
        double operator *(const Point &b)const
        {
            return x * b.x + y * b.y;
        }
        //绕原点旋转角度B(弧度值),后x,y的变化
        void transXY(double B)
        {
            double tx = x, ty = y;
            x = tx * cos(B) - ty * sin(B);
            y = tx * sin(B) + ty * cos(B);
        }
        double distance(Point & bb)
        {
            return sqrt((x - bb.x) * (x - bb.x) + (y - bb.y) * (y - bb.y));
        }
        void show()
        {
            cout << x << " " << y << endl;
        }
    };
    
    int n, m;
    double z;
    Point a[maxn];
    const double pi = acos(-1);
    int main()
    {
    #if DEBUG_Switch
        freopen("C:\code\input.txt", "r", stdin);
    #endif
        //freopen("C:\code\output.txt","w",stdout);
        int t;
        t = readint();
        while (t--)
        {
            n = readint();
            m = readint();
            scanf("%lf", &z);
            repd(i, 1, n)
            {
                a[i].x = readint();
                a[i].y = readint();
            }
            double c;
            Point o = Point(0, 0);
            int isok = 0;
            z /= 2;
            repd(i, 1, n)
            {
                c = o.distance(a[i]);
                Point base = a[i];
                if (c > z )
                {
                    base.transXY(acos(z / c));// 旋转
                }
                base /= o.distance(base);// 单位化
                int cnt = 1;
                repd(j, 1, n)
                {
                    if (i == j)
                        continue;
                    if (abs( a[j]*base) <= z)
                    {
                        if ((a[j]^base) >= 0)
                        {
                            cnt++;
                        }
                    }
                }
                if (cnt >= m)
                {
                    isok = 1;
                    break;
                }
            }
            if (isok)
            {
                printf("Yes
    ");
            } else
            {
                printf("No
    ");
            }
        }
    
        return 0;
    }
    
    
  • 相关阅读:
    更改桌面位置
    三国杀高级技巧!!
    excel中删除空白行方法
    欢迎来稿
    coreseek配置文件分析
    html中a连接触发表单提交
    html点击按钮动态添加input文本框
    页面表单预览数据传递注意事项
    mysql 主从复制(masterslave)
    mysql explain key_len小结
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/13917207.html
Copyright © 2011-2022 走看看