zoukankan      html  css  js  c++  java
  • pytorch中torch.unsqueeze()函数与np.expand_dims()

    numpy.expand_dims(aaxis)

    Expand the shape of an array.

    Insert a new axis that will appear at the axis position in the expanded array shape.

     

    Parameters:
    a array_like

    Input array.

    axis int

    Position in the expanded axes where the new axis is placed.

    Returns:
    res ndarray

    Output array. The number of dimensions is one greater than that of the input array.

    Examples

    >>> x = np.array([1,2])
    >>> x.shape
    (2,)
    

    The following is equivalent to x[np.newaxis,:] or x[np.newaxis]:

    >>> y = np.expand_dims(x, axis=0)
    >>> y
    array([[1, 2]])
    >>> y.shape
    (1, 2)
    >>> y = np.expand_dims(x, axis=1)  # Equivalent to x[:,np.newaxis]
    >>> y
    array([[1],
           [2]])
    >>> y.shape
    (2, 1)
    

    Note that some examples may use None instead of np.newaxis. These are the same objects:

    >>> np.newaxis is None
    True


     

    torch.unsqueeze(inputdimout=None) → Tensor

    Returns a new tensor with a dimension of size one inserted at the specified position.

    The returned tensor shares the same underlying data with this tensor.

    dim value within the range [-input.dim() 1, input.dim() 1) can be used. Negative dimwill correspond to unsqueeze() applied at dim = dim input.dim() 1.

    Parameters:
    • input (Tensor) – the input tensor
    • dim (int) – the index at which to insert the singleton dimension
    • out (Tensoroptional) – the output tensor

    Example:

    >>> x = torch.tensor([1, 2, 3, 4])
    >>> torch.unsqueeze(x, 0)
    tensor([[ 1,  2,  3,  4]])
    >>> torch.unsqueeze(x, 1)
    tensor([[ 1],
            [ 2],
            [ 3],
            [ 4]])
     
  • 相关阅读:
    Asp.Net多线程用法1
    Asp.Net操作FTP方法
    django 利用PIL 保存图片
    django —— Celery实现异步和定时任务
    豆瓣源安装requirements.txt
    一个有趣的python排序模块:bisect
    Python 多线程
    python list元素为dict时的排序
    python版本坑:md5例子(python2与python3中md5区别)
    单独的 python 脚本文件使用 django 自带的 model
  • 原文地址:https://www.cnblogs.com/qinduanyinghua/p/9333300.html
Copyright © 2011-2022 走看看