zoukankan      html  css  js  c++  java
  • LeetCode OJ--Path Sum *

    https://oj.leetcode.com/problems/path-sum/

    树的深搜,求从根到叶子的路径。

    记住深搜的样子

    #include <iostream>
    using namespace std;
    struct TreeNode {
         int val;
         TreeNode *left;
         TreeNode *right;
         TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     };
    
    
    class Solution {
    public:
        bool hasPathSum(TreeNode *root, int sum) {
            //null
            if(root == NULL )
                return false;
    
            //leaf node
            if(root->left == NULL && root->right == NULL && root->val == sum)
                return true;
            if(root->left == NULL && root->right == NULL)
                return false;
    
            //not leaf node
            if(root->left ||root->right)
             {
                 bool ans = false;
    
                if(root->left)
                {
                    ans = hasPathSum(root->left, sum - root->val);
                    if(ans == true)
                    return true;
                }
                if(root->right)
                {
                    ans = hasPathSum(root->right, sum-root->val);
                    if(ans == true)
                    return true;
                }
                return false;
             }
            return false;
        }
    };
    
    int main()
    {
        TreeNode *n1 = new TreeNode(1);
        TreeNode *n2 = new TreeNode(-2);
        TreeNode *n3 = new TreeNode(-3);
        TreeNode *n4 = new TreeNode(1);
        TreeNode *n5 = new TreeNode(3);
        TreeNode *n6 = new TreeNode(-2);
        TreeNode *n7 = new TreeNode(-1);
        n1->left = n2;
        n1->right = n3;
        n2->left = n4;
        n2->right = n5;
        n3->left = n6;
        n3->right = NULL;
        n4->left = n7;
        class Solution myS;
        cout<<myS.hasPathSum(n1,2);
        return 0;
    }
  • 相关阅读:
    卢卡斯定理算法模板
    求组合数的O(n^2)和O(n)解法及模板
    求逆元的方法及模板
    扩展欧基里德算法模板
    牛客练习赛43-F(简单容斥)
    容斥原理
    牛客网练习赛43-C(图论)
    折半搜索
    枚举+树状数组(经典)
    思维并查集/网络流和二分
  • 原文地址:https://www.cnblogs.com/qingcheng/p/3790325.html
Copyright © 2011-2022 走看看