这题也是第二次做,本想第一次做时参考的算法会和老师讲的一样,不想老师讲的算法用在这题感觉还不如思雪园友的算法(http://www.cnblogs.com/sixue/archive/2015/04.html)来的简单,不过老师给的思路是一种挺通用的思路,可以用来解决一系列的问题,但我目前看着有点吃力。我坚持认为对全局变量的使用需十分谨慎,能不用就不用,所以为了不出现全局变量,就无辜多了一串参数。实现代码如下,题目在代码下方
1 #include <stdio.h> 2 #include <stdlib.h> 3 4 int compare(const void * a, const void * b); 5 void inOrder(int * a, int n, int * in, int N); 6 7 int main() 8 { 9 // freopen("in.txt", "r", stdin); // for test 10 int i, N, n; 11 scanf("%d", &N); 12 int a[N]; 13 for(i = 0; i < N; i++) 14 { 15 scanf("%d", &n); 16 a[i] = n; 17 } 18 19 qsort(a, N, sizeof(int), compare); 20 int in[N + 1]; 21 inOrder(a, 1, in, N); 22 for(i = 1; i <= N; i++) 23 { 24 printf("%d", in[i]); 25 if(i < N) 26 printf(" "); 27 else 28 printf(" "); 29 } 30 // fclose(stdin); // for test 31 return 0; 32 } 33 34 int compare(const void * a, const void * b) 35 { 36 return *(int *)a - *(int *)b; 37 } 38 39 void inOrder(int * a, int n, int * in, int N) 40 { 41 static int i = 0; 42 43 if(n * 2 <= N) 44 inOrder(a, 2 * n, in, N); 45 in[n] = a[i++]; 46 if(n * 2 + 1 <= N) 47 inOrder(a, n * 2 + 1, in, N); 48 }
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10 1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4