zoukankan      html  css  js  c++  java
  • The equation SGU

    There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<=x2, y1<=y<=y2. Integer root of this equation is a pair of integer numbers (x,y).

    Input

    Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value.

    Output

    Write answer to the output.

    Sample Input

    1 1 -3
    0 4
    0 4
    Sample Output

    4

    题意:
    给出a*x+b*y+c=0的a,b,c的值以及x,y的范围[x1,x2],[y1,y2]。求范围内满足该式的
    (x,y)有序对的个数。

    参考的这位大神的博客,讲的特别清楚。(http://www.cnblogs.com/Rinyo/archive/2012/11/25/2787419.html

    思路:根据扩展欧几里得公式可以求出一个特解(x0,y0)。
    则通解为(x0+k*(b/g),y0-k*(a/g)) ps:(g=gcd(a,b))
    现在只要根据给出的范围找出k的上限和下限,然后求差就行了。
    这里注意因为通解
    y1<=(y=y0-k*(a/g))<=y2
    -y2<=k*(a/g)<=-y1
    (-y2)/(a/g),(-y1)/(a/g)可能为小数,所以我们要解决k的取值问题。
    假如2.5<=k<=5.5,显然k要取3,4,5;
    假如-6.5<=k<=-4.5,显然k取-6,-5,-4。
    即下限取较大值,上限取较小值。

    AC代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #define  LL long long 
    using namespace std;
    LL ex_gcd(LL a,LL b,LL& x,LL& y)
    {
        if(b==0)
        {
            x=1,y=0;
            return a;
        }
        int ans=ex_gcd(b,a%b,x,y);
        int tmp=x;
        x=y;
        y=tmp-a/b*y;
        return ans;
    }
    int gcd(int a,int b)
    {
        if(b==0) return a;
        else return gcd(b,a%b);
    }
    int main()
    {
       LL a,b,c,x1,x2,y1,y2;
       scanf("%lld%lld%lld%lld%lld%lld%lld",&a,&b,&c,&x1,&x2,&y1,&y2);
       c=-c;
       //这里使a,b,c的值为正的同时改变区间,方便以后计算k的上下限
       if(c<0)
       {
        a=-a,b=-b,c=-c;
       }
       if(a<0)
       {
        a=-a;
        LL tmp=x1;
        x1=-x2;
        x2=-tmp;
       }
       if(b<0)
       {
        b=-b;
        LL tmp=y1;
        y1=-y2;
        y2=-tmp;
       }
       //特判,因为时间为250ms
       if(a==0||b==0)
       {
          if(a==0&&b==0)
          {
              if(c==0)
                cout<<(x2-x1+1)*(y2-y1+1)<<endl;
              else
                cout<<0<<endl;
              return 0; 
          }
          else if(a==0)
          {
              if(c%b==0&&c/b>=y1&&c/b<=y2)
                cout<<x2-x1+1<<endl;
              else
                cout<<0<<endl;
              return 0;
          }
          else
          {
            if(c%a==0&&c/a>=x1&&c/a<=x2)
                cout<<y2-y1+1<<endl;
            else cout<<0<<endl;
            return 0;
          }
       }
       LL x,y;
       LL g=ex_gcd(a,b,x,y);
       if(c%g!=0)
       {
        cout<<0<<endl;
        return 0;
       }
       a/=g,b/=g,c/=g; 
       x*=c;
       y*=c;
       LL k1=max(ceil((x1-x)*1.0/b),ceil((y-y2)*1.0/a));
       //ceil()函数,向上取整
       LL k2=min(floor((x2-x)*1.0/b),floor((y-y1)*1.0/a));          
       //floor()函数,向下取整
       if(k2>=k1)
        cout<<k2-k1+1<<endl;
       else
        cout<<0<<endl;
    
    
       return 0;
    
    }

    注意用long long,不然会WA。对于long long过 与 int不过的问题,一直很玄学。

  • 相关阅读:
    一生不可错过的五句话
    分布式缓存系统Memcached简介与实践[转]
    telnet serverip serverport 可以测试服务器端口是否通
    使用c#生成高品质小空间的缩略图
    sql server2005对tsql的增强之在聚合函数的后面使用over关键字
    (转)让你受益终身的10个Word实用技巧
    sql取所有记录中每天的最后一笔交易的记录
    屏蔽服务器端包含在文件不存在时报错的错误信息
    c#农历日历类
    Niubility 英语教程
  • 原文地址:https://www.cnblogs.com/qinjames/p/10554700.html
Copyright © 2011-2022 走看看