zoukankan      html  css  js  c++  java
  • The equation SGU

    There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<=x2, y1<=y<=y2. Integer root of this equation is a pair of integer numbers (x,y).

    Input

    Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value.

    Output

    Write answer to the output.

    Sample Input

    1 1 -3
    0 4
    0 4
    Sample Output

    4

    题意:
    给出a*x+b*y+c=0的a,b,c的值以及x,y的范围[x1,x2],[y1,y2]。求范围内满足该式的
    (x,y)有序对的个数。

    参考的这位大神的博客,讲的特别清楚。(http://www.cnblogs.com/Rinyo/archive/2012/11/25/2787419.html

    思路:根据扩展欧几里得公式可以求出一个特解(x0,y0)。
    则通解为(x0+k*(b/g),y0-k*(a/g)) ps:(g=gcd(a,b))
    现在只要根据给出的范围找出k的上限和下限,然后求差就行了。
    这里注意因为通解
    y1<=(y=y0-k*(a/g))<=y2
    -y2<=k*(a/g)<=-y1
    (-y2)/(a/g),(-y1)/(a/g)可能为小数,所以我们要解决k的取值问题。
    假如2.5<=k<=5.5,显然k要取3,4,5;
    假如-6.5<=k<=-4.5,显然k取-6,-5,-4。
    即下限取较大值,上限取较小值。

    AC代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #define  LL long long 
    using namespace std;
    LL ex_gcd(LL a,LL b,LL& x,LL& y)
    {
        if(b==0)
        {
            x=1,y=0;
            return a;
        }
        int ans=ex_gcd(b,a%b,x,y);
        int tmp=x;
        x=y;
        y=tmp-a/b*y;
        return ans;
    }
    int gcd(int a,int b)
    {
        if(b==0) return a;
        else return gcd(b,a%b);
    }
    int main()
    {
       LL a,b,c,x1,x2,y1,y2;
       scanf("%lld%lld%lld%lld%lld%lld%lld",&a,&b,&c,&x1,&x2,&y1,&y2);
       c=-c;
       //这里使a,b,c的值为正的同时改变区间,方便以后计算k的上下限
       if(c<0)
       {
        a=-a,b=-b,c=-c;
       }
       if(a<0)
       {
        a=-a;
        LL tmp=x1;
        x1=-x2;
        x2=-tmp;
       }
       if(b<0)
       {
        b=-b;
        LL tmp=y1;
        y1=-y2;
        y2=-tmp;
       }
       //特判,因为时间为250ms
       if(a==0||b==0)
       {
          if(a==0&&b==0)
          {
              if(c==0)
                cout<<(x2-x1+1)*(y2-y1+1)<<endl;
              else
                cout<<0<<endl;
              return 0; 
          }
          else if(a==0)
          {
              if(c%b==0&&c/b>=y1&&c/b<=y2)
                cout<<x2-x1+1<<endl;
              else
                cout<<0<<endl;
              return 0;
          }
          else
          {
            if(c%a==0&&c/a>=x1&&c/a<=x2)
                cout<<y2-y1+1<<endl;
            else cout<<0<<endl;
            return 0;
          }
       }
       LL x,y;
       LL g=ex_gcd(a,b,x,y);
       if(c%g!=0)
       {
        cout<<0<<endl;
        return 0;
       }
       a/=g,b/=g,c/=g; 
       x*=c;
       y*=c;
       LL k1=max(ceil((x1-x)*1.0/b),ceil((y-y2)*1.0/a));
       //ceil()函数,向上取整
       LL k2=min(floor((x2-x)*1.0/b),floor((y-y1)*1.0/a));          
       //floor()函数,向下取整
       if(k2>=k1)
        cout<<k2-k1+1<<endl;
       else
        cout<<0<<endl;
    
    
       return 0;
    
    }

    注意用long long,不然会WA。对于long long过 与 int不过的问题,一直很玄学。

  • 相关阅读:
    【转】C#中的委托和事件
    ASP.NET上传文件实例代码
    我在配置OpenCV环境以及使用VS2013运行代码时遇到的问题
    JAVA_HOME环境变量失效的解决办法
    一道int和unsigned char之间强制类型转换的题目
    为什么不看好OpenStack:它的没落不可避免[转]
    一个销前谈云桌面的适用场景(再议云桌面营销之选择正确的客户环境)
    云桌面的前世今生
    云桌面三大谎言之GPU虚拟化
    如何理解清零心态
  • 原文地址:https://www.cnblogs.com/qinjames/p/10554953.html
Copyright © 2011-2022 走看看