Given any permutation of the numbers {0, 1, 2,..., N−1}, it is easy to sort them in increasing order. But what if Swap(0, *)
is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (≤) followed by a permutation sequence of {0, 1, ..., N−1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:
10
3 5 7 2 6 4 9 0 8 1
Sample Output:
9、
#include<iostream> #include<algorithm> using namespace std; int main() { int n; int ans=0;//最后的答案 scanf("%d",&n); int rest =n-1;//还有几个数不在本位上 int pos[n]; for(int i=0;i<n;i++) { scanf("%d",&pos[i]);//数字i存放在pos[i] if(pos[i]==i) rest--; } int k =1;//k存放除了0之外的不在本位上的最小数字 while(rest) { if(pos[0]==0)//如果0在本位上 {//则寻找一个不在本位上的数和0交换 while(k<n) { if(pos[k]!=k)//如果k不在本位上就和0交换 { swap(pos[0],pos[k]); ans++; break; } k++; } } while(pos[0]!=0) { swap(pos[0],pos[pos[0]]); ans++; rest--; } } printf("%d",ans); return 0; }
这段代码只有22分,有2个点运行超时!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!