zoukankan      html  css  js  c++  java
  • 87. Scramble String (String; DP)

    Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

    Below is one possible representation of s1 = "great":

        great
       /    
      gr    eat
     /     /  
    g   r  e   at
               / 
              a   t
    

    To scramble the string, we may choose any non-leaf node and swap its two children.

    For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

        rgeat
       /    
      rg    eat
     /     /  
    r   g  e   at
               / 
              a   t
    

    We say that "rgeat" is a scrambled string of "great".

    Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

        rgtae
       /    
      rg    tae
     /     /  
    r   g  ta  e
           / 
          t   a
    

    We say that "rgtae" is a scrambled string of "great".

    Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

    思路:对付复杂问题的方法是从简单的特例来思考。简单情况:

    1. 如果字符串长度为1,那么必须两个字符串完全相同;
    2. 如果字符串长度为2,例如s1='ab',则s2='ab'或s2='ba'才行
    3. 如果字符串任意长度,那么可以把s1分为a1, b1两部分,s2分为a2,b2两部分。需要满足:((a1=a2)&&(b1=b2)) || ((a1=b2)&&(a2=b1)) =>可用递归
    class Solution {
    public:
        bool isScramble(string s1, string s2) {
            if(s1 == s2) return true; 
            for(int isep = 1; isep < s1.size(); ++ isep) { //traverse split pos
                string seg11 = s1.substr(0,isep);
                string seg12 = s1.substr(isep);
                
                //see if a1=a2 &&b1=b2 is ok
                string seg21 = s2.substr(0,isep);
                string seg22 = s2.substr(isep);
                if(isScramble(seg11,seg21) && isScramble(seg12,seg22)) return true;
                    
                //see if a1=b2 &&a2=b1 is ok
                seg21 = s2.substr(s2.size() - isep); //从后截取isep长度
                seg22 = s2.substr(0,s2.size() - isep);
                if(isScramble(seg11,seg21) && isScramble(seg12,seg22)) return true;
            }
            return false;
        }
    };

    Result: Time Limit Exceeded

    思路II: 动态规划。三维状态dp[i][j][k],前两维分别表示s1和s2的下标起始位置,k表示子串的长度。dp[i][j][k]=true表示s1(i, i+k-1)和s2(j, j+k-1)是scramble。

    状态转移方程:if(dp[i][j][split] && dp[i+split][j+split][k-split] || dp[i][j+k-split][split] && dp[i+split][j][k-split]) dp[i][j][k]=true;

    因为在状态转移方程中k又要分割成更小的值,所以必须已知小值,k从小到大遍历。

    class Solution {
    public:
        bool isScramble(string s1, string s2) {
            int len = s1.length();
            if(len==0) return true;
            if(s1 == s2) return true;
    
            //初始状态
            vector<vector<vector<bool>>> dp(len, vector<vector<bool>>(len, vector<bool>(len+1, false) ) );
            for (int i = 0; i < len; ++i)
            {
                for (int j = 0; j < len; ++j)
                {
                    dp[i][j][1] = s1[i]==s2[j];
                }
            }
            
            //状态转移
            for(int k = 2; k <= len; k++) //从较短的子串开始分析,为了状态转方程
            {
                for(int s1Pointer = 0; s1Pointer+k-1 < len; s1Pointer++)
                {
                    for(int s2Pointer = 0; s2Pointer+k-1 < len; s2Pointer++)
                    {
                        for(int split = 1; split < k; split++) //levelSize长度的任意一种分割
                        {
                            if ((dp[s1Pointer][s2Pointer][split] && dp[s1Pointer+split][s2Pointer+split][k-split]) ||
                            (dp[s1Pointer][s2Pointer+k-split][split] && dp[s1Pointer+split][s2Pointer][k-split]))
                            {
                                dp[s1Pointer][s2Pointer][k] = true;
                                break;
                            };
                        }           
                    }
                }
            }
            return dp[0][0][len]; 
        }
    };
  • 相关阅读:
    python3----列表
    python3----字符串
    PTA 深入虎穴 (正解)和树的同构
    第5章 树与二叉树学习小结
    第4章学习小结_串(BF&KMP算法)、数组(三元组)
    《数据结构》第3章-栈与队列的学习总结
    《数据结构》第2章线性表的学习总结
    Web安全基础——小白自学
    git撤销commit
    收藏一些比较好的前端博客
  • 原文地址:https://www.cnblogs.com/qionglouyuyu/p/4924176.html
Copyright © 2011-2022 走看看