重要接口inverse_transform
在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵,这几乎在向我们暗示,任何有inverse_transform这个接口的过程都是可逆的。PCA应该也是如此。在sklearn中,我们通过让原特征矩阵X右乘新特征空间矩阵V(k,n)来生成新特征矩阵X_dr,那理论上来说,让新特征矩阵X_dr右乘V(k,n)的逆矩阵 ,就可以将新特征矩阵X_dr还原为X。那sklearn是否这样做了呢?让我们来看看下面的案例。
1 迷你案例:用人脸识别看PCA降维后的信息保存量
人脸识别是最容易的,用来探索inverse_transform功能的数据。我们先调用一组人脸数据X(m,n),对人脸图像进行绘制,然后我们对人脸数据进行降维得到X_dr,之后再使用inverse_transform(X_dr)返回一个X_inverse(m,n),并对这个新矩阵中的人脸图像也进行绘制。
如果PCA的降维过程是可逆的,我们应当期待X(m,n)和X_inverse(m,n)返回一模一样的图像,即携带一模一样的信息。
1. 导入需要的库和模块
from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import PCA import matplotlib.pyplot as plt import numpy as np
2. 导入数据,探索数据
faces = fetch_lfw_people(min_faces_per_person=60) faces.images.shape #怎样理解这个数据的维度? faces.data.shape #换成特征矩阵之后,这个矩阵是什么样? X = faces.data
3. 建模降维,获取降维后的特征矩阵X_dr
pca = PCA(150) X_dr = pca.fit_transform(X) X_dr.shape
4. 将降维后矩阵用inverse_transform返回原空间
X_inverse = pca.inverse_transform(X_dr)
X_inverse.shape
5. 将特征矩阵X和X_inverse可视化
fig, ax = plt.subplots(2,10,figsize=(10,2.5) ,subplot_kw={"xticks":[],"yticks":[]} ) #和2.3.3节中的案例一样,我们需要对子图对象进行遍历的循环,来将图像填入子图中 #那在这里,我们使用怎样的循环? #现在我们的ax中是2行10列,第一行是原数据,第二行是inverse_transform后返回的数据 #所以我们需要同时循环两份数据,即一次循环画一列上的两张图,而不是把ax拉平 for i in range(10): ax[0,i].imshow(face.image[i,:,:],cmap="binary_r") ax[1,i].imshow(X_inverse[i].reshape(62,47),cmap="binary_r")
可以明显看出,这两组数据可视化后,由降维后再通过inverse_transform转换回原维度的数据画出的图像和原数据画的图像大致相似,但原数据的图像明显更加清晰。
这说明,inverse_transform并没有实现数据的完全逆转。这是因为,在降维的时候,部分信息已经被舍弃了,X_dr中往往不会包含原数据100%的信息,所以在逆转的时
候,即便维度升高,原数据中已经被舍弃的信息也不可能再回来了。所以,降维不是完全可逆的。
Inverse_transform的功能,是基于X_dr中的数据进行升维,将数据重新映射到原数据所在的特征空间中,而并非恢复所有原有的数据。
但同时,我们也可以看出,降维到300以后的数据,的确保留了原数据的大部分信息,所以图像看起来,才会和原数据高度相似,只是稍稍模糊罢了。
2 迷你案例:用PCA做噪音过滤
降维的目的之一就是希望抛弃掉对模型带来负面影响的特征,而我们相信,带有效信息的特征的方差应该是远大于噪音的,所以相比噪音,有效的特征所带的信息应该不会在PCA过程中被大量抛弃。
inverse_transform能够在不恢复原始数据的情况下,将降维后的数据返回到原本的高维空间,即是说能够实现”保证维度,但去掉方差很小特征所带的信息“。利用inverse_transform的这个性质,我们能够实现噪音过滤。
1. 导入所需要的库和模块
from sklearn.datasets import load_digits from sklearn.decomposition import PCA import matplotlib.pyplot as plt import numpy as np
2. 导入数据,探索数据
digits = load_digits()
digits.data.shape
3. 定义画图函数
def plot_digits(data): fig, axes = plt.subplots(4,10,figsize=(10,4) ,subplot_kw = {"xticks":[],"yticks":[]} ) for i, ax in enumerate(axes.flat): ax.imshow(data[i].reshape(8,8),cmap="binary") plot_digits(digits.data)
4. 为数据加上噪音
np.random.RandomState(42) #在指定的数据集中,随机抽取服从正态分布的数据 #两个参数,分别是指定的数据集,和抽取出来的正太分布的方差 noisy = np.random.normal(digits.data,2) plot_digits(noisy)
5. 降维
pca = PCA(0.5).fit(noisy) X_dr = pca.transform(noisy) X_dr.shape
6. 逆转降维结果,实现降噪
without_noise = pca.inverse_transform(X_dr)
plot_digits(without_noise)