zoukankan      html  css  js  c++  java
  • 机器学习实战基础(三十八):随机森林 (五)RandomForestRegressor 之 用随机森林回归填补缺失值

    简介

    我们从现实中收集的数据,几乎不可能是完美无缺的,往往都会有一些缺失值。面对缺失值,很多人选择的方式是直接将含有缺失值的样本删除,这是一种有效的方法,但是有时候填补缺失值会比直接丢弃样本效果更好,即便我们其实并不知道缺失值的真实样貌。

    在sklearn中,我们可以使用sklearn.impute.SimpleImputer来轻松地将均值,中值,或者其他最常用的数值填补到数据中,在这个案例中,我们将使用均值,0,和随机森林回归来填补缺
    失值,并验证四种状况下的拟合状况,找出对使用的数据集来说最佳的缺失值填补方法。

    1. 导入需要的库

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.datasets import load_boston
    from sklearn.impute import SimpleImputer
    from sklearn.ensemble import RandomForestRegressor
     
    from sklearn.model_selection import cross_val_score

    2. 以波士顿数据集为例,导入完整的数据集并探索

    dataset = load_boston()
     
    dataset.data.shape
    #总共506*13=6578个数据
     
    X_full, y_full = dataset.data, dataset.target
    n_samples = X_full.shape[0]
    n_features = X_full.shape[1]

    3. 为完整数据集放入缺失值

    #首先确定我们希望放入的缺失数据的比例,在这里我们假设是50%,那总共就要有3289个数据缺失
     
    rng = np.random.RandomState(0)
    missing_rate = 0.5
    n_missing_samples = int(np.floor(n_samples * n_features * missing_rate))
    #np.floor向下取整,返回.0格式的浮点数
     
    #所有数据要随机遍布在数据集的各行各列当中,而一个缺失的数据会需要一个行索引和一个列索引
    #如果能够创造一个数组,包含3289个分布在0~506中间的行索引,和3289个分布在0~13之间的列索引,那我们就可
    以利用索引来为数据中的任意3289个位置赋空值
    #然后我们用0,均值和随机森林来填写这些缺失值,然后查看回归的结果如何
     
    missing_features = rng.randint(0,n_features,n_missing_samples)
    missing_samples = rng.randint(0,n_samples,n_missing_samples)
     
    #missing_samples = rng.choice(dataset.data.shape[0],n_missing_samples,replace=False)
     
    #我们现在采样了3289个数据,远远超过我们的样本量506,所以我们使用随机抽取的函数randint。但如果我们需要
    的数据量小于我们的样本量506,那我们可以采用np.random.choice来抽样,choice会随机抽取不重复的随机数,
    因此可以帮助我们让数据更加分散,确保数据不会集中在一些行中
     
    X_missing = X_full.copy()
    y_missing = y_full.copy()
     
    X_missing[missing_samples,missing_features] = np.nan
     
    X_missing = pd.DataFrame(X_missing)
    #转换成DataFrame是为了后续方便各种操作,numpy对矩阵的运算速度快到拯救人生,但是在索引等功能上却不如
    pandas来得好用

    4. 使用0和均值填补缺失值

    #使用均值进行填补
    from sklearn.impute import SimpleImputer
    imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
    X_missing_mean = imp_mean.fit_transform(X_missing)
     
    #使用0进行填补
    imp_0 = SimpleImputer(missing_values=np.nan, strategy="constant",fill_value=0)
    X_missing_0 = imp_0.fit_transform(X_missing)

    5. 使用随机森林填补缺失值

    """
    使用随机森林回归填补缺失值
     
    任何回归都是从特征矩阵中学习,然后求解连续型标签y的过程,之所以能够实现这个过程,是因为回归算法认为,特征
    矩阵和标签之前存在着某种联系。实际上,标签和特征是可以相互转换的,比如说,在一个“用地区,环境,附近学校数
    量”预测“房价”的问题中,我们既可以用“地区”,“环境”,“附近学校数量”的数据来预测“房价”,也可以反过来,
    用“环境”,“附近学校数量”和“房价”来预测“地区”。而回归填补缺失值,正是利用了这种思想。
     
    对于一个有n个特征的数据来说,其中特征T有缺失值,我们就把特征T当作标签,其他的n-1个特征和原本的标签组成新
    的特征矩阵。那对于T来说,它没有缺失的部分,就是我们的Y_test,这部分数据既有标签也有特征,而它缺失的部
    分,只有特征没有标签,就是我们需要预测的部分。
     
    特征T不缺失的值对应的其他n-1个特征 + 本来的标签:X_train
    特征T不缺失的值:Y_train
     
    特征T缺失的值对应的其他n-1个特征 + 本来的标签:X_test
    特征T缺失的值:未知,我们需要预测的Y_test
     
    这种做法,对于某一个特征大量缺失,其他特征却很完整的情况,非常适用。
     
    那如果数据中除了特征T之外,其他特征也有缺失值怎么办?
    答案是遍历所有的特征,从缺失最少的开始进行填补(因为填补缺失最少的特征所需要的准确信息最少)。
    填补一个特征时,先将其他特征的缺失值用0代替,每完成一次回归预测,就将预测值放到原本的特征矩阵中,再继续填
    补下一个特征。每一次填补完毕,有缺失值的特征会减少一个,所以每次循环后,需要用0来填补的特征就越来越少。当
    进行到最后一个特征时(这个特征应该是所有特征中缺失值最多的),已经没有任何的其他特征需要用0来进行填补了,
    而我们已经使用回归为其他特征填补了大量有效信息,可以用来填补缺失最多的特征。
    遍历所有的特征后,数据就完整,不再有缺失值了。
     
    """
     
    X_missing_reg = X_missing.copy()
    sortindex = np.argsort(X_missing_reg.isnull().sum(axis=0)).values
     
    for i in sortindex:
        
        #构建我们的新特征矩阵和新标签
        df = X_missing_reg
        fillc = df.iloc[:,i]
        df = pd.concat([df.iloc[:,df.columns != i],pd.DataFrame(y_full)],axis=1)
        
        #在新特征矩阵中,对含有缺失值的列,进行0的填补
        df_0 =SimpleImputer(missing_values=np.nan,
                            strategy='constant',fill_value=0).fit_transform(df)
        
        #找出我们的训练集和测试集
        Ytrain = fillc[fillc.notnull()]
        Ytest = fillc[fillc.isnull()]
        Xtrain = df_0[Ytrain.index,:]
        Xtest = df_0[Ytest.index,:]
        
        #用随机森林回归来填补缺失值
    
        rfc = RandomForestRegressor(n_estimators=100)
        rfc = rfc.fit(Xtrain, Ytrain)
        Ypredict = rfc.predict(Xtest)
        
        #将填补好的特征返回到我们的原始的特征矩阵中
        X_missing_reg.loc[X_missing_reg.iloc[:,i].isnull(),i] = Ypredict

    6. 对填补好的数据进行建模

    #对所有数据进行建模,取得MSE结果
     
    X = [X_full,X_missing_mean,X_missing_0,X_missing_reg]
     
    mse = []
    std = []
    for x in X:
        estimator = RandomForestRegressor(random_state=0, n_estimators=100)
        scores = cross_val_score(estimator,x,y_full,scoring='neg_mean_squared_error', 
    cv=5).mean()
        mse.append(scores * -1)

    7. 用所得结果画出条形图

    x_labels = ['Full data',
                'Zero Imputation',
                'Mean Imputation',
                'Regressor Imputation']
    colors = ['r', 'g', 'b', 'orange']
     
    plt.figure(figsize=(12, 6))
    ax = plt.subplot(111)
    for i in np.arange(len(mse)):
        ax.barh(i, mse[i],color=colors[i], alpha=0.6, align='center')
    ax.set_title('Imputation Techniques with Boston Data')
    ax.set_xlim(left=np.min(mse) * 0.9,
                 right=np.max(mse) * 1.1)
    ax.set_yticks(np.arange(len(mse)))
    ax.set_xlabel('MSE')
    ax.set_yticklabels(x_labels)
    plt.show()
  • 相关阅读:
    java23种设计模式-结构型模式-适配器模式
    java23种设计模式-创建者模式-抽象工厂模式
    java23种设计模式-创建者模式-工厂模式
    从jvm运行数据区分析字符串是否相同
    Linux常见安全策略
    MySQL 报错案例分析
    Linux系统网络监控工具
    海量运维架构
    Linux运维面试技巧
    DBA机遇于风险并存
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/13032956.html
Copyright © 2011-2022 走看看