zoukankan      html  css  js  c++  java
  • 数据可视化基础专题(三十三):Pandas基础(十三) Computational tools(一)

    Statistical functions

    #Percent change

    Series and DataFrame have a method pct_change() (opens new window)to compute the percent change over a given number of periods (using fill_method to fill NA/null values before computing the percent change).

    In [1]: ser = pd.Series(np.random.randn(8))
    
    In [2]: ser.pct_change()
    Out[2]: 
    0         NaN
    1   -1.602976
    2    4.334938
    3   -0.247456
    4   -2.067345
    5   -1.142903
    6   -1.688214
    7   -9.759729
    dtype: float64
    
    In [3]: df = pd.DataFrame(np.random.randn(10, 4))
    
    In [4]: df.pct_change(periods=3)
    Out[4]: 
              0         1         2         3
    0       NaN       NaN       NaN       NaN
    1       NaN       NaN       NaN       NaN
    2       NaN       NaN       NaN       NaN
    3 -0.218320 -1.054001  1.987147 -0.510183
    4 -0.439121 -1.816454  0.649715 -4.822809
    5 -0.127833 -3.042065 -5.866604 -1.776977
    6 -2.596833 -1.959538 -2.111697 -3.798900
    7 -0.117826 -2.169058  0.036094 -0.067696
    8  2.492606 -1.357320 -1.205802 -1.558697
    9 -1.012977  2.324558 -1.003744 -0.371806

    Covariance

    Series.cov() (opens new window)can be used to compute covariance between series (excluding missing values).

    In [5]: s1 = pd.Series(np.random.randn(1000))
    
    In [6]: s2 = pd.Series(np.random.randn(1000))
    
    In [7]: s1.cov(s2)
    Out[7]: 0.000680108817431082

    Analogously, DataFrame.cov() (opens new window)to compute pairwise covariances among the series in the DataFrame, also excluding NA/null values.

    Note

    Assuming the missing data are missing at random this results in an estimate for the covariance matrix which is unbiased. However, for many applications this estimate may not be acceptable because the estimated covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimated correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices (opens new window)for more details.

    In [8]: frame = pd.DataFrame(np.random.randn(1000, 5),
       ...:                      columns=['a', 'b', 'c', 'd', 'e'])
       ...: 
    
    In [9]: frame.cov()
    Out[9]: 
              a         b         c         d         e
    a  1.000882 -0.003177 -0.002698 -0.006889  0.031912
    b -0.003177  1.024721  0.000191  0.009212  0.000857
    c -0.002698  0.000191  0.950735 -0.031743 -0.005087
    d -0.006889  0.009212 -0.031743  1.002983 -0.047952
    e  0.031912  0.000857 -0.005087 -0.047952  1.042487

    DataFrame.cov also supports an optional min_periods keyword that specifies the required minimum number of observations for each column pair in order to have a valid result.

    In [10]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c'])
    
    In [11]: frame.loc[frame.index[:5], 'a'] = np.nan
    
    In [12]: frame.loc[frame.index[5:10], 'b'] = np.nan
    
    In [13]: frame.cov()
    Out[13]: 
              a         b         c
    a  1.123670 -0.412851  0.018169
    b -0.412851  1.154141  0.305260
    c  0.018169  0.305260  1.301149
    
    In [14]: frame.cov(min_periods=12)
    Out[14]: 
              a         b         c
    a  1.123670       NaN  0.018169
    b       NaN  1.154141  0.305260
    c  0.018169  0.305260  1.301149

    Correlation

    Correlation may be computed using the corr() (opens new window)method. Using the method parameter, several methods for computing correlations are provided:

    Method nameDescription
    pearson (default) Standard correlation coefficient
    kendall Kendall Tau correlation coefficient
    spearman Spearman rank correlation coefficient

    All of these are currently computed using pairwise complete observations. Wikipedia has articles covering the above correlation coefficients:

    Note

    Please see the caveats associated with this method of calculating correlation matrices in the covariance section.

    In [15]: frame = pd.DataFrame(np.random.randn(1000, 5),
       ....:                      columns=['a', 'b', 'c', 'd', 'e'])
       ....: 
    
    In [16]: frame.iloc[::2] = np.nan
    
    # Series with Series
    In [17]: frame['a'].corr(frame['b'])
    Out[17]: 0.013479040400098794
    
    In [18]: frame['a'].corr(frame['b'], method='spearman')
    Out[18]: -0.007289885159540637
    
    # Pairwise correlation of DataFrame columns
    In [19]: frame.corr()
    Out[19]: 
              a         b         c         d         e
    a  1.000000  0.013479 -0.049269 -0.042239 -0.028525
    b  0.013479  1.000000 -0.020433 -0.011139  0.005654
    c -0.049269 -0.020433  1.000000  0.018587 -0.054269
    d -0.042239 -0.011139  0.018587  1.000000 -0.017060
    e -0.028525  0.005654 -0.054269 -0.017060  1.000000

    Note that non-numeric columns will be automatically excluded from the correlation calculation.

    Like covcorr also supports the optional min_periods keyword:

    In [20]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c'])
    
    In [21]: frame.loc[frame.index[:5], 'a'] = np.nan
    
    In [22]: frame.loc[frame.index[5:10], 'b'] = np.nan
    
    In [23]: frame.corr()
    Out[23]: 
              a         b         c
    a  1.000000 -0.121111  0.069544
    b -0.121111  1.000000  0.051742
    c  0.069544  0.051742  1.000000
    
    In [24]: frame.corr(min_periods=12)
    Out[24]: 
              a         b         c
    a  1.000000       NaN  0.069544
    b       NaN  1.000000  0.051742
    c  0.069544  0.051742  1.000000

    The method argument can also be a callable for a generic correlation calculation. In this case, it should be a single function that produces a single value from two ndarray inputs. Suppose we wanted to compute the correlation based on histogram intersection:

    # histogram intersection
    In [25]: def histogram_intersection(a, b):
       ....:     return np.minimum(np.true_divide(a, a.sum()),
       ....:                       np.true_divide(b, b.sum())).sum()
       ....: 
    
    In [26]: frame.corr(method=histogram_intersection)
    Out[26]: 
              a          b          c
    a  1.000000  -6.404882  -2.058431
    b -6.404882   1.000000 -19.255743
    c -2.058431 -19.255743   1.000000

    A related method corrwith() (opens new window)is implemented on DataFrame to compute the correlation between like-labeled Series contained in different DataFrame objects.

    In [27]: index = ['a', 'b', 'c', 'd', 'e']
    
    In [28]: columns = ['one', 'two', 'three', 'four']
    
    In [29]: df1 = pd.DataFrame(np.random.randn(5, 4), index=index, columns=columns)
    
    In [30]: df2 = pd.DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns)
    
    In [31]: df1.corrwith(df2)
    Out[31]: 
    one     -0.125501
    two     -0.493244
    three    0.344056
    four     0.004183
    dtype: float64
    
    In [32]: df2.corrwith(df1, axis=1)
    Out[32]: 
    a   -0.675817
    b    0.458296
    c    0.190809
    d   -0.186275
    e         NaN
    dtype: float64

    Data ranking

    The rank() (opens new window)method produces a data ranking with ties being assigned the mean of the ranks (by default) for the group:

    In [33]: s = pd.Series(np.random.np.random.randn(5), index=list('abcde'))
    
    In [34]: s['d'] = s['b']  # so there's a tie
    
    In [35]: s.rank()
    Out[35]: 
    a    5.0
    b    2.5
    c    1.0
    d    2.5
    e    4.0
    dtype: float64

    rank() (opens new window)is also a DataFrame method and can rank either the rows (axis=0) or the columns (axis=1). NaN values are excluded from the ranking.

    In [36]: df = pd.DataFrame(np.random.np.random.randn(10, 6))
    
    In [37]: df[4] = df[2][:5]  # some ties
    
    In [38]: df
    Out[38]: 
              0         1         2         3         4         5
    0 -0.904948 -1.163537 -1.457187  0.135463 -1.457187  0.294650
    1 -0.976288 -0.244652 -0.748406 -0.999601 -0.748406 -0.800809
    2  0.401965  1.460840  1.256057  1.308127  1.256057  0.876004
    3  0.205954  0.369552 -0.669304  0.038378 -0.669304  1.140296
    4 -0.477586 -0.730705 -1.129149 -0.601463 -1.129149 -0.211196
    5 -1.092970 -0.689246  0.908114  0.204848       NaN  0.463347
    6  0.376892  0.959292  0.095572 -0.593740       NaN -0.069180
    7 -1.002601  1.957794 -0.120708  0.094214       NaN -1.467422
    8 -0.547231  0.664402 -0.519424 -0.073254       NaN -1.263544
    9 -0.250277 -0.237428 -1.056443  0.419477       NaN  1.375064
    
    In [39]: df.rank(1)
    Out[39]: 
         0    1    2    3    4    5
    0  4.0  3.0  1.5  5.0  1.5  6.0
    1  2.0  6.0  4.5  1.0  4.5  3.0
    2  1.0  6.0  3.5  5.0  3.5  2.0
    3  4.0  5.0  1.5  3.0  1.5  6.0
    4  5.0  3.0  1.5  4.0  1.5  6.0
    5  1.0  2.0  5.0  3.0  NaN  4.0
    6  4.0  5.0  3.0  1.0  NaN  2.0
    7  2.0  5.0  3.0  4.0  NaN  1.0
    8  2.0  5.0  3.0  4.0  NaN  1.0
    9  2.0  3.0  1.0  4.0  NaN  5.0

    rank optionally takes a parameter ascending which by default is true; when false, data is reverse-ranked, with larger values assigned a smaller rank.

    rank supports different tie-breaking methods, specified with the method parameter:

    • average : average rank of tied group
    • min : lowest rank in the group
    • max : highest rank in the group
    • first : ranks assigned in the order they appear in the array

    #Window Functions

    For working with data, a number of window functions are provided for computing common window or rolling statistics. Among these are count, sum, mean, median, correlation, variance, covariance, standard deviation, skewness, and kurtosis.

    The rolling() and expanding() functions can be used directly from DataFrameGroupBy objects, see the groupby docs.

    Note

    The API for window statistics is quite similar to the way one works with GroupBy objects, see the documentation here.

    We work with rollingexpanding and exponentially weighted data through the corresponding objects, RollingExpanding and EWM.

    In [40]: s = pd.Series(np.random.randn(1000),
       ....:               index=pd.date_range('1/1/2000', periods=1000))
       ....: 
    
    In [41]: s = s.cumsum()
    
    In [42]: s
    Out[42]: 
    2000-01-01    -0.268824
    2000-01-02    -1.771855
    2000-01-03    -0.818003
    2000-01-04    -0.659244
    2000-01-05    -1.942133
                    ...    
    2002-09-22   -67.457323
    2002-09-23   -69.253182
    2002-09-24   -70.296818
    2002-09-25   -70.844674
    2002-09-26   -72.475016
    Freq: D, Length: 1000, dtype: float64

    These are created from methods on Series and DataFrame.

    In [43]: r = s.rolling(window=60)
    
    In [44]: r
    Out[44]: Rolling [window=60,center=False,axis=0]

    These object provide tab-completion of the available methods and properties.

    In [14]: r.<TAB>                                          # noqa: E225, E999
    r.agg         r.apply       r.count       r.exclusions  r.max         r.median      r.name        r.skew        r.sum
    r.aggregate   r.corr        r.cov         r.kurt        r.mean        r.min         r.quantile    r.std         r.var

    Generally these methods all have the same interface. They all accept the following arguments:

    • window: size of moving window
    • min_periods: threshold of non-null data points to require (otherwise result is NA)
    • center: boolean, whether to set the labels at the center (default is False)

    We can then call methods on these rolling objects. These return like-indexed objects:

    In [45]: r.mean()
    Out[45]: 
    2000-01-01          NaN
    2000-01-02          NaN
    2000-01-03          NaN
    2000-01-04          NaN
    2000-01-05          NaN
                    ...    
    2002-09-22   -62.914971
    2002-09-23   -63.061867
    2002-09-24   -63.213876
    2002-09-25   -63.375074
    2002-09-26   -63.539734
    Freq: D, Length: 1000, dtype: float64
    In [46]: s.plot(style='k--')
    Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0x7f66048bdef0>
    
    In [47]: r.mean().plot(style='k')
    Out[47]: <matplotlib.axes._subplots.AxesSubplot at 0x7f66048bdef0>

     They can also be applied to DataFrame objects. This is really just syntactic sugar for applying the moving window operator to all of the DataFrame’s columns:

    In [48]: df = pd.DataFrame(np.random.randn(1000, 4),
       ....:                   index=pd.date_range('1/1/2000', periods=1000),
       ....:                   columns=['A', 'B', 'C', 'D'])
       ....: 
    
    In [49]: df = df.cumsum()
    
    In [50]: df.rolling(window=60).sum().plot(subplots=True)
    Out[50]: 
    array([<matplotlib.axes._subplots.AxesSubplot object at 0x7f66075a7f60>,
           <matplotlib.axes._subplots.AxesSubplot object at 0x7f65f79e55c0>,
           <matplotlib.axes._subplots.AxesSubplot object at 0x7f65f7998588>,
           <matplotlib.axes._subplots.AxesSubplot object at 0x7f65f794b550>],
          dtype=object)

    Method summary

    We provide a number of common statistical functions:

    MethodDescription
    count()
    Number of non-null observations
    sum()
    Sum of values
    mean()
    Mean of values
    median()
    Arithmetic median of values
    min()
    Minimum
    max()
    Maximum
    std()
    Bessel-corrected sample standard deviation
    var()
    Unbiased variance
    skew()
    Sample skewness (3rd moment)
    kurt()
    Sample kurtosis (4th moment)
    quantile()
    Sample quantile (value at %)
    apply()
    Generic apply
    cov()
    Unbiased covariance (binary)
    corr()
    Correlation (binary)

    The apply() (opens new window)function takes an extra func argument and performs generic rolling computations. The func argument should be a single function that produces a single value from an ndarray input. Suppose we wanted to compute the mean absolute deviation on a rolling basis:

    In [51]: def mad(x):
       ....:     return np.fabs(x - x.mean()).mean()
       ....: 
    
    In [52]: s.rolling(window=60).apply(mad, raw=True).plot(style='k')
    Out[52]: <matplotlib.axes._subplots.AxesSubplot at 0x7f65f795fac8>

    Rolling windows

    Passing win_type to .rolling generates a generic rolling window computation, that is weighted according the win_type. The following methods are available:

    MethodDescription
    sum()
    Sum of values
    mean()
    Mean of values

    The weights used in the window are specified by the win_type keyword. The list of recognized types are the scipy.signal window functions (opens new window):

    • boxcar
    • triang
    • blackman
    • hamming
    • bartlett
    • parzen
    • bohman
    • blackmanharris
    • nuttall
    • barthann
    • kaiser (needs beta)
    • gaussian (needs std)
    • general_gaussian (needs power, width)
    • slepian (needs width)
    • exponential (needs tau).
    In [53]: ser = pd.Series(np.random.randn(10),
       ....:                 index=pd.date_range('1/1/2000', periods=10))
       ....: 
    
    In [54]: ser.rolling(window=5, win_type='triang').mean()
    Out[54]: 
    2000-01-01         NaN
    2000-01-02         NaN
    2000-01-03         NaN
    2000-01-04         NaN
    2000-01-05   -1.037870
    2000-01-06   -0.767705
    2000-01-07   -0.383197
    2000-01-08   -0.395513
    2000-01-09   -0.558440
    2000-01-10   -0.672416
    Freq: D, dtype: float64

    Note that the boxcar window is equivalent to mean()

    In [55]: ser.rolling(window=5, win_type='boxcar').mean()
    Out[55]: 
    2000-01-01         NaN
    2000-01-02         NaN
    2000-01-03         NaN
    2000-01-04         NaN
    2000-01-05   -0.841164
    2000-01-06   -0.779948
    2000-01-07   -0.565487
    2000-01-08   -0.502815
    2000-01-09   -0.553755
    2000-01-10   -0.472211
    Freq: D, dtype: float64
    
    In [56]: ser.rolling(window=5).mean()
    Out[56]: 
    2000-01-01         NaN
    2000-01-02         NaN
    2000-01-03         NaN
    2000-01-04         NaN
    2000-01-05   -0.841164
    2000-01-06   -0.779948
    2000-01-07   -0.565487
    2000-01-08   -0.502815
    2000-01-09   -0.553755
    2000-01-10   -0.472211
    Freq: D, dtype: float64

    For some windowing functions, additional parameters must be specified:

    In [57]: ser.rolling(window=5, win_type='gaussian').mean(std=0.1)
    Out[57]: 
    2000-01-01         NaN
    2000-01-02         NaN
    2000-01-03         NaN
    2000-01-04         NaN
    2000-01-05   -1.309989
    2000-01-06   -1.153000
    2000-01-07    0.606382
    2000-01-08   -0.681101
    2000-01-09   -0.289724
    2000-01-10   -0.996632
    Freq: D, dtype: float64

    Note

    For .sum() with a win_type, there is no normalization done to the weights for the window. Passing custom weights of [1, 1, 1] will yield a different result than passing weights of [2, 2, 2], for example. When passing a win_type instead of explicitly specifying the weights, the weights are already normalized so that the largest weight is 1.

    In contrast, the nature of the .mean() calculation is such that the weights are normalized with respect to each other. Weights of [1, 1, 1] and [2, 2, 2] yield the same result.

    Time-aware rolling

    New in version 0.19.0.

    New in version 0.19.0 are the ability to pass an offset (or convertible) to a .rolling() method and have it produce variable sized windows based on the passed time window. For each time point, this includes all preceding values occurring within the indicated time delta.

    This can be particularly useful for a non-regular time frequency index.

    In [58]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
       ....:                    index=pd.date_range('20130101 09:00:00',
       ....:                                        periods=5,
       ....:                                        freq='s'))
       ....: 
    
    In [59]: dft
    Out[59]: 
                           B
    2013-01-01 09:00:00  0.0
    2013-01-01 09:00:01  1.0
    2013-01-01 09:00:02  2.0
    2013-01-01 09:00:03  NaN
    2013-01-01 09:00:04  4.0

    This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.

    In [60]: dft.rolling(2).sum()
    Out[60]: 
                           B
    2013-01-01 09:00:00  NaN
    2013-01-01 09:00:01  1.0
    2013-01-01 09:00:02  3.0
    2013-01-01 09:00:03  NaN
    2013-01-01 09:00:04  NaN
    
    In [61]: dft.rolling(2, min_periods=1).sum()
    Out[61]: 
                           B
    2013-01-01 09:00:00  0.0
    2013-01-01 09:00:01  1.0
    2013-01-01 09:00:02  3.0
    2013-01-01 09:00:03  2.0
    2013-01-01 09:00:04  4.0

    Specifying an offset allows a more intuitive specification of the rolling frequency.

    In [62]: dft.rolling('2s').sum()
    Out[62]: 
                           B
    2013-01-01 09:00:00  0.0
    2013-01-01 09:00:01  1.0
    2013-01-01 09:00:02  3.0
    2013-01-01 09:00:03  2.0
    2013-01-01 09:00:04  4.0

    Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.

    In [63]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
       ....:                    index=pd.Index([pd.Timestamp('20130101 09:00:00'),
       ....:                                    pd.Timestamp('20130101 09:00:02'),
       ....:                                    pd.Timestamp('20130101 09:00:03'),
       ....:                                    pd.Timestamp('20130101 09:00:05'),
       ....:                                    pd.Timestamp('20130101 09:00:06')],
       ....:                                   name='foo'))
       ....: 
    
    In [64]: dft
    Out[64]: 
                           B
    foo                     
    2013-01-01 09:00:00  0.0
    2013-01-01 09:00:02  1.0
    2013-01-01 09:00:03  2.0
    2013-01-01 09:00:05  NaN
    2013-01-01 09:00:06  4.0
    
    In [65]: dft.rolling(2).sum()
    Out[65]: 
                           B
    foo                     
    2013-01-01 09:00:00  NaN
    2013-01-01 09:00:02  1.0
    2013-01-01 09:00:03  3.0
    2013-01-01 09:00:05  NaN
    2013-01-01 09:00:06  NaN

    Using the time-specification generates variable windows for this sparse data.

    In [66]: dft.rolling('2s').sum()
    Out[66]: 
                           B
    foo                     
    2013-01-01 09:00:00  0.0
    2013-01-01 09:00:02  1.0
    2013-01-01 09:00:03  3.0
    2013-01-01 09:00:05  NaN
    2013-01-01 09:00:06  4.0

    Furthermore, we now allow an optional on parameter to specify a column (rather than the default of the index) in a DataFrame.

    In [67]: dft = dft.reset_index()
    
    In [68]: dft
    Out[68]: 
                      foo    B
    0 2013-01-01 09:00:00  0.0
    1 2013-01-01 09:00:02  1.0
    2 2013-01-01 09:00:03  2.0
    3 2013-01-01 09:00:05  NaN
    4 2013-01-01 09:00:06  4.0
    
    In [69]: dft.rolling('2s', on='foo').sum()
    Out[69]: 
                      foo    B
    0 2013-01-01 09:00:00  0.0
    1 2013-01-01 09:00:02  1.0
    2 2013-01-01 09:00:03  3.0
    3 2013-01-01 09:00:05  NaN
    4 2013-01-01 09:00:06  4.0

    Rolling window endpoints

    New in version 0.20.0.

    The inclusion of the interval endpoints in rolling window calculations can be specified with the closed parameter:

    closedDescriptionDefault for
    right close right endpoint time-based windows
    left close left endpoint  
    both close both endpoints fixed windows
    neither open endpoints  

    For example, having the right endpoint open is useful in many problems that require that there is no contamination from present information back to past information. This allows the rolling window to compute statistics “up to that point in time”, but not including that point in time.

    In [70]: df = pd.DataFrame({'x': 1},
       ....:                   index=[pd.Timestamp('20130101 09:00:01'),
       ....:                          pd.Timestamp('20130101 09:00:02'),
       ....:                          pd.Timestamp('20130101 09:00:03'),
       ....:                          pd.Timestamp('20130101 09:00:04'),
       ....:                          pd.Timestamp('20130101 09:00:06')])
       ....: 
    
    In [71]: df["right"] = df.rolling('2s', closed='right').x.sum()  # default
    
    In [72]: df["both"] = df.rolling('2s', closed='both').x.sum()
    
    In [73]: df["left"] = df.rolling('2s', closed='left').x.sum()
    
    In [74]: df["neither"] = df.rolling('2s', closed='neither').x.sum()
    
    In [75]: df
    Out[75]: 
                         x  right  both  left  neither
    2013-01-01 09:00:01  1    1.0   1.0   NaN      NaN
    2013-01-01 09:00:02  1    2.0   2.0   1.0      1.0
    2013-01-01 09:00:03  1    2.0   3.0   2.0      1.0
    2013-01-01 09:00:04  1    2.0   3.0   2.0      1.0
    2013-01-01 09:00:06  1    1.0   2.0   1.0      NaN

    Currently, this feature is only implemented for time-based windows. For fixed windows, the closed parameter cannot be set and the rolling window will always have both endpoints closed.

    #Time-aware rolling vs. resampling

    Using .rolling() with a time-based index is quite similar to resampling. They both operate and perform reductive operations on time-indexed pandas objects.

    When using .rolling() with an offset. The offset is a time-delta. Take a backwards-in-time looking window, and aggregate all of the values in that window (including the end-point, but not the start-point). This is the new value at that point in the result. These are variable sized windows in time-space for each point of the input. You will get a same sized result as the input.

    When using .resample() with an offset. Construct a new index that is the frequency of the offset. For each frequency bin, aggregate points from the input within a backwards-in-time looking window that fall in that bin. The result of this aggregation is the output for that frequency point. The windows are fixed size in the frequency space. Your result will have the shape of a regular frequency between the min and the max of the original input object.

    To summarize, .rolling() is a time-based window operation, while .resample() is a frequency-based window operation.

    #Centering windows

    By default the labels are set to the right edge of the window, but a center keyword is available so the labels can be set at the center.

    In [76]: ser.rolling(window=5).mean()
    Out[76]: 
    2000-01-01         NaN
    2000-01-02         NaN
    2000-01-03         NaN
    2000-01-04         NaN
    2000-01-05   -0.841164
    2000-01-06   -0.779948
    2000-01-07   -0.565487
    2000-01-08   -0.502815
    2000-01-09   -0.553755
    2000-01-10   -0.472211
    Freq: D, dtype: float64
    
    In [77]: ser.rolling(window=5, center=True).mean()
    Out[77]: 
    2000-01-01         NaN
    2000-01-02         NaN
    2000-01-03   -0.841164
    2000-01-04   -0.779948
    2000-01-05   -0.565487
    2000-01-06   -0.502815
    2000-01-07   -0.553755
    2000-01-08   -0.472211
    2000-01-09         NaN
    2000-01-10         NaN
    Freq: D, dtype: float64

    Binary window functions

    cov() (opens new window)and corr() (opens new window)can compute moving window statistics about two Series or any combination of DataFrame/Series or DataFrame/DataFrame. Here is the behavior in each case:

    • two Series: compute the statistic for the pairing.
    • DataFrame/Series: compute the statistics for each column of the DataFrame with the passed Series, thus returning a DataFrame.
    • DataFrame/DataFrame: by default compute the statistic for matching column names, returning a DataFrame. If the keyword argument pairwise=True is passed then computes the statistic for each pair of columns, returning a MultiIndexed DataFrame whose index are the dates in question (see the next section).

    For example:

    In [78]: df = pd.DataFrame(np.random.randn(1000, 4),
       ....:                   index=pd.date_range('1/1/2000', periods=1000),
       ....:                   columns=['A', 'B', 'C', 'D'])
       ....: 
    
    In [79]: df = df.cumsum()
    
    In [80]: df2 = df[:20]
    
    In [81]: df2.rolling(window=5).corr(df2['B'])
    Out[81]: 
                       A    B         C         D
    2000-01-01       NaN  NaN       NaN       NaN
    2000-01-02       NaN  NaN       NaN       NaN
    2000-01-03       NaN  NaN       NaN       NaN
    2000-01-04       NaN  NaN       NaN       NaN
    2000-01-05  0.768775  1.0 -0.977990  0.800252
    ...              ...  ...       ...       ...
    2000-01-16  0.691078  1.0  0.807450 -0.939302
    2000-01-17  0.274506  1.0  0.582601 -0.902954
    2000-01-18  0.330459  1.0  0.515707 -0.545268
    2000-01-19  0.046756  1.0 -0.104334 -0.419799
    2000-01-20 -0.328241  1.0 -0.650974 -0.777777
    
    [20 rows x 4 columns]

    Computing rolling pairwise covariances and correlations

    In financial data analysis and other fields it’s common to compute covariance and correlation matrices for a collection of time series. Often one is also interested in moving-window covariance and correlation matrices. This can be done by passing the pairwise keyword argument, which in the case of DataFrame inputs will yield a MultiIndexed DataFrame whose index are the dates in question. In the case of a single DataFrame argument the pairwise argument can even be omitted:

    Note

    Missing values are ignored and each entry is computed using the pairwise complete observations. Please see the covariance section for caveats associated with this method of calculating covariance and correlation matrices.

    In [82]: covs = (df[['B', 'C', 'D']].rolling(window=50)
       ....:                            .cov(df[['A', 'B', 'C']], pairwise=True))
       ....: 
    
    In [83]: covs.loc['2002-09-22':]
    Out[83]: 
                         B         C         D
    2002-09-22 A  1.367467  8.676734 -8.047366
               B  3.067315  0.865946 -1.052533
               C  0.865946  7.739761 -4.943924
    2002-09-23 A  0.910343  8.669065 -8.443062
               B  2.625456  0.565152 -0.907654
               C  0.565152  7.825521 -5.367526
    2002-09-24 A  0.463332  8.514509 -8.776514
               B  2.306695  0.267746 -0.732186
               C  0.267746  7.771425 -5.696962
    2002-09-25 A  0.467976  8.198236 -9.162599
               B  2.307129  0.267287 -0.754080
               C  0.267287  7.466559 -5.822650
    2002-09-26 A  0.545781  7.899084 -9.326238
               B  2.311058  0.322295 -0.844451
               C  0.322295  7.038237 -5.684445
    In [84]: correls = df.rolling(window=50).corr()
    
    In [85]: correls.loc['2002-09-22':]
    Out[85]: 
                         A         B         C         D
    2002-09-22 A  1.000000  0.186397  0.744551 -0.769767
               B  0.186397  1.000000  0.177725 -0.240802
               C  0.744551  0.177725  1.000000 -0.712051
               D -0.769767 -0.240802 -0.712051  1.000000
    2002-09-23 A  1.000000  0.134723  0.743113 -0.758758
    ...                ...       ...       ...       ...
    2002-09-25 D -0.739160 -0.164179 -0.704686  1.000000
    2002-09-26 A  1.000000  0.087756  0.727792 -0.736562
               B  0.087756  1.000000  0.079913 -0.179477
               C  0.727792  0.079913  1.000000 -0.692303
               D -0.736562 -0.179477 -0.692303  1.000000
    
    [20 rows x 4 columns]

    You can efficiently retrieve the time series of correlations between two columns by reshaping and indexing:

    In [86]: correls.unstack(1)[('A', 'C')].plot()
    Out[86]: <matplotlib.axes._subplots.AxesSubplot at 0x7f65f8dc79e8>

  • 相关阅读:
    Android Gradle Plugin指南(五)——Build Variants(构建变种版本号)
    文件内容操作篇clearerr fclose fdopen feof fflush fgetc fgets fileno fopen fputc fputs fread freopen fseek ftell fwrite getc getchar gets
    文件操作篇 close creat dup dup2 fcntl flock fsync lseek mkstemp open read sync write
    嵌入式linux应用程序调试方法
    version control system:git/hg/subversion/cvs/clearcase/vss。software configruation management。代码集成CI:Cruisecontrol/hudson/buildbot
    最值得你所关注的10个C语言开源项目
    如何记录linux终端下的操作日志
    CentOS 5.5 虚拟机安装 VirtualBox 客户端增强功能
    sizeof, strlen区别
    C/C++嵌入式开发面试题
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/14873443.html
Copyright © 2011-2022 走看看