Statistical functions
#Percent change
Series
and DataFrame
have a method pct_change()
(opens new window)to compute the percent change over a given number of periods (using fill_method
to fill NA/null values before computing the percent change).
In [1]: ser = pd.Series(np.random.randn(8)) In [2]: ser.pct_change() Out[2]: 0 NaN 1 -1.602976 2 4.334938 3 -0.247456 4 -2.067345 5 -1.142903 6 -1.688214 7 -9.759729 dtype: float64 In [3]: df = pd.DataFrame(np.random.randn(10, 4)) In [4]: df.pct_change(periods=3) Out[4]: 0 1 2 3 0 NaN NaN NaN NaN 1 NaN NaN NaN NaN 2 NaN NaN NaN NaN 3 -0.218320 -1.054001 1.987147 -0.510183 4 -0.439121 -1.816454 0.649715 -4.822809 5 -0.127833 -3.042065 -5.866604 -1.776977 6 -2.596833 -1.959538 -2.111697 -3.798900 7 -0.117826 -2.169058 0.036094 -0.067696 8 2.492606 -1.357320 -1.205802 -1.558697 9 -1.012977 2.324558 -1.003744 -0.371806
Covariance
Series.cov()
(opens new window)can be used to compute covariance between series (excluding missing values).
In [5]: s1 = pd.Series(np.random.randn(1000)) In [6]: s2 = pd.Series(np.random.randn(1000)) In [7]: s1.cov(s2) Out[7]: 0.000680108817431082
Analogously, DataFrame.cov()
(opens new window)to compute pairwise covariances among the series in the DataFrame, also excluding NA/null values.
Note
Assuming the missing data are missing at random this results in an estimate for the covariance matrix which is unbiased. However, for many applications this estimate may not be acceptable because the estimated covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimated correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices (opens new window)for more details.
In [8]: frame = pd.DataFrame(np.random.randn(1000, 5), ...: columns=['a', 'b', 'c', 'd', 'e']) ...: In [9]: frame.cov() Out[9]: a b c d e a 1.000882 -0.003177 -0.002698 -0.006889 0.031912 b -0.003177 1.024721 0.000191 0.009212 0.000857 c -0.002698 0.000191 0.950735 -0.031743 -0.005087 d -0.006889 0.009212 -0.031743 1.002983 -0.047952 e 0.031912 0.000857 -0.005087 -0.047952 1.042487
DataFrame.cov
also supports an optional min_periods
keyword that specifies the required minimum number of observations for each column pair in order to have a valid result.
In [10]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c']) In [11]: frame.loc[frame.index[:5], 'a'] = np.nan In [12]: frame.loc[frame.index[5:10], 'b'] = np.nan In [13]: frame.cov() Out[13]: a b c a 1.123670 -0.412851 0.018169 b -0.412851 1.154141 0.305260 c 0.018169 0.305260 1.301149 In [14]: frame.cov(min_periods=12) Out[14]: a b c a 1.123670 NaN 0.018169 b NaN 1.154141 0.305260 c 0.018169 0.305260 1.301149
Correlation
Correlation may be computed using the corr()
(opens new window)method. Using the method
parameter, several methods for computing correlations are provided:
Method name | Description |
---|---|
pearson (default) | Standard correlation coefficient |
kendall | Kendall Tau correlation coefficient |
spearman | Spearman rank correlation coefficient |
All of these are currently computed using pairwise complete observations. Wikipedia has articles covering the above correlation coefficients:
- Pearson correlation coefficient(opens new window)
- Kendall rank correlation coefficient(opens new window)
- Spearman’s rank correlation coefficient(opens new window)
Note
Please see the caveats associated with this method of calculating correlation matrices in the covariance section.
In [15]: frame = pd.DataFrame(np.random.randn(1000, 5), ....: columns=['a', 'b', 'c', 'd', 'e']) ....: In [16]: frame.iloc[::2] = np.nan # Series with Series In [17]: frame['a'].corr(frame['b']) Out[17]: 0.013479040400098794 In [18]: frame['a'].corr(frame['b'], method='spearman') Out[18]: -0.007289885159540637 # Pairwise correlation of DataFrame columns In [19]: frame.corr() Out[19]: a b c d e a 1.000000 0.013479 -0.049269 -0.042239 -0.028525 b 0.013479 1.000000 -0.020433 -0.011139 0.005654 c -0.049269 -0.020433 1.000000 0.018587 -0.054269 d -0.042239 -0.011139 0.018587 1.000000 -0.017060 e -0.028525 0.005654 -0.054269 -0.017060 1.000000
Note that non-numeric columns will be automatically excluded from the correlation calculation.
Like cov
, corr
also supports the optional min_periods
keyword:
In [20]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c']) In [21]: frame.loc[frame.index[:5], 'a'] = np.nan In [22]: frame.loc[frame.index[5:10], 'b'] = np.nan In [23]: frame.corr() Out[23]: a b c a 1.000000 -0.121111 0.069544 b -0.121111 1.000000 0.051742 c 0.069544 0.051742 1.000000 In [24]: frame.corr(min_periods=12) Out[24]: a b c a 1.000000 NaN 0.069544 b NaN 1.000000 0.051742 c 0.069544 0.051742 1.000000
The method
argument can also be a callable for a generic correlation calculation. In this case, it should be a single function that produces a single value from two ndarray inputs. Suppose we wanted to compute the correlation based on histogram intersection:
# histogram intersection In [25]: def histogram_intersection(a, b): ....: return np.minimum(np.true_divide(a, a.sum()), ....: np.true_divide(b, b.sum())).sum() ....: In [26]: frame.corr(method=histogram_intersection) Out[26]: a b c a 1.000000 -6.404882 -2.058431 b -6.404882 1.000000 -19.255743 c -2.058431 -19.255743 1.000000
A related method corrwith()
(opens new window)is implemented on DataFrame to compute the correlation between like-labeled Series contained in different DataFrame objects.
In [27]: index = ['a', 'b', 'c', 'd', 'e'] In [28]: columns = ['one', 'two', 'three', 'four'] In [29]: df1 = pd.DataFrame(np.random.randn(5, 4), index=index, columns=columns) In [30]: df2 = pd.DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns) In [31]: df1.corrwith(df2) Out[31]: one -0.125501 two -0.493244 three 0.344056 four 0.004183 dtype: float64 In [32]: df2.corrwith(df1, axis=1) Out[32]: a -0.675817 b 0.458296 c 0.190809 d -0.186275 e NaN dtype: float64
Data ranking
The rank()
(opens new window)method produces a data ranking with ties being assigned the mean of the ranks (by default) for the group:
In [33]: s = pd.Series(np.random.np.random.randn(5), index=list('abcde')) In [34]: s['d'] = s['b'] # so there's a tie In [35]: s.rank() Out[35]: a 5.0 b 2.5 c 1.0 d 2.5 e 4.0 dtype: float64
rank()
(opens new window)is also a DataFrame method and can rank either the rows (axis=0
) or the columns (axis=1
). NaN
values are excluded from the ranking.
In [36]: df = pd.DataFrame(np.random.np.random.randn(10, 6)) In [37]: df[4] = df[2][:5] # some ties In [38]: df Out[38]: 0 1 2 3 4 5 0 -0.904948 -1.163537 -1.457187 0.135463 -1.457187 0.294650 1 -0.976288 -0.244652 -0.748406 -0.999601 -0.748406 -0.800809 2 0.401965 1.460840 1.256057 1.308127 1.256057 0.876004 3 0.205954 0.369552 -0.669304 0.038378 -0.669304 1.140296 4 -0.477586 -0.730705 -1.129149 -0.601463 -1.129149 -0.211196 5 -1.092970 -0.689246 0.908114 0.204848 NaN 0.463347 6 0.376892 0.959292 0.095572 -0.593740 NaN -0.069180 7 -1.002601 1.957794 -0.120708 0.094214 NaN -1.467422 8 -0.547231 0.664402 -0.519424 -0.073254 NaN -1.263544 9 -0.250277 -0.237428 -1.056443 0.419477 NaN 1.375064 In [39]: df.rank(1) Out[39]: 0 1 2 3 4 5 0 4.0 3.0 1.5 5.0 1.5 6.0 1 2.0 6.0 4.5 1.0 4.5 3.0 2 1.0 6.0 3.5 5.0 3.5 2.0 3 4.0 5.0 1.5 3.0 1.5 6.0 4 5.0 3.0 1.5 4.0 1.5 6.0 5 1.0 2.0 5.0 3.0 NaN 4.0 6 4.0 5.0 3.0 1.0 NaN 2.0 7 2.0 5.0 3.0 4.0 NaN 1.0 8 2.0 5.0 3.0 4.0 NaN 1.0 9 2.0 3.0 1.0 4.0 NaN 5.0
rank
optionally takes a parameter ascending
which by default is true; when false, data is reverse-ranked, with larger values assigned a smaller rank.
rank
supports different tie-breaking methods, specified with the method
parameter:
average
: average rank of tied groupmin
: lowest rank in the groupmax
: highest rank in the groupfirst
: ranks assigned in the order they appear in the array
#Window Functions
For working with data, a number of window functions are provided for computing common window or rolling statistics. Among these are count, sum, mean, median, correlation, variance, covariance, standard deviation, skewness, and kurtosis.
The rolling()
and expanding()
functions can be used directly from DataFrameGroupBy objects, see the groupby docs.
Note
The API for window statistics is quite similar to the way one works with GroupBy
objects, see the documentation here.
We work with rolling
, expanding
and exponentially weighted
data through the corresponding objects, Rolling
, Expanding
and EWM
.
In [40]: s = pd.Series(np.random.randn(1000), ....: index=pd.date_range('1/1/2000', periods=1000)) ....: In [41]: s = s.cumsum() In [42]: s Out[42]: 2000-01-01 -0.268824 2000-01-02 -1.771855 2000-01-03 -0.818003 2000-01-04 -0.659244 2000-01-05 -1.942133 ... 2002-09-22 -67.457323 2002-09-23 -69.253182 2002-09-24 -70.296818 2002-09-25 -70.844674 2002-09-26 -72.475016 Freq: D, Length: 1000, dtype: float64
These are created from methods on Series
and DataFrame
.
In [43]: r = s.rolling(window=60) In [44]: r Out[44]: Rolling [window=60,center=False,axis=0]
These object provide tab-completion of the available methods and properties.
In [14]: r.<TAB> # noqa: E225, E999 r.agg r.apply r.count r.exclusions r.max r.median r.name r.skew r.sum r.aggregate r.corr r.cov r.kurt r.mean r.min r.quantile r.std r.var
Generally these methods all have the same interface. They all accept the following arguments:
window
: size of moving windowmin_periods
: threshold of non-null data points to require (otherwise result is NA)center
: boolean, whether to set the labels at the center (default is False)
We can then call methods on these rolling
objects. These return like-indexed objects:
In [45]: r.mean() Out[45]: 2000-01-01 NaN 2000-01-02 NaN 2000-01-03 NaN 2000-01-04 NaN 2000-01-05 NaN ... 2002-09-22 -62.914971 2002-09-23 -63.061867 2002-09-24 -63.213876 2002-09-25 -63.375074 2002-09-26 -63.539734 Freq: D, Length: 1000, dtype: float64 In [46]: s.plot(style='k--') Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0x7f66048bdef0> In [47]: r.mean().plot(style='k') Out[47]: <matplotlib.axes._subplots.AxesSubplot at 0x7f66048bdef0>
They can also be applied to DataFrame objects. This is really just syntactic sugar for applying the moving window operator to all of the DataFrame’s columns:
In [48]: df = pd.DataFrame(np.random.randn(1000, 4), ....: index=pd.date_range('1/1/2000', periods=1000), ....: columns=['A', 'B', 'C', 'D']) ....: In [49]: df = df.cumsum() In [50]: df.rolling(window=60).sum().plot(subplots=True) Out[50]: array([<matplotlib.axes._subplots.AxesSubplot object at 0x7f66075a7f60>, <matplotlib.axes._subplots.AxesSubplot object at 0x7f65f79e55c0>, <matplotlib.axes._subplots.AxesSubplot object at 0x7f65f7998588>, <matplotlib.axes._subplots.AxesSubplot object at 0x7f65f794b550>], dtype=object)
Method summary
We provide a number of common statistical functions:
Method | Description |
---|---|
count() |
Number of non-null observations |
sum() |
Sum of values |
mean() |
Mean of values |
median() |
Arithmetic median of values |
min() |
Minimum |
max() |
Maximum |
std() |
Bessel-corrected sample standard deviation |
var() |
Unbiased variance |
skew() |
Sample skewness (3rd moment) |
kurt() |
Sample kurtosis (4th moment) |
quantile() |
Sample quantile (value at %) |
apply() |
Generic apply |
cov() |
Unbiased covariance (binary) |
corr() |
Correlation (binary) |
The apply()
(opens new window)function takes an extra func
argument and performs generic rolling computations. The func
argument should be a single function that produces a single value from an ndarray input. Suppose we wanted to compute the mean absolute deviation on a rolling basis:
In [51]: def mad(x): ....: return np.fabs(x - x.mean()).mean() ....: In [52]: s.rolling(window=60).apply(mad, raw=True).plot(style='k') Out[52]: <matplotlib.axes._subplots.AxesSubplot at 0x7f65f795fac8>
Rolling windows
Passing win_type
to .rolling
generates a generic rolling window computation, that is weighted according the win_type
. The following methods are available:
Method | Description |
---|---|
sum() |
Sum of values |
mean() |
Mean of values |
The weights used in the window are specified by the win_type
keyword. The list of recognized types are the scipy.signal window functions (opens new window):
boxcar
triang
blackman
hamming
bartlett
parzen
bohman
blackmanharris
nuttall
barthann
kaiser
(needs beta)gaussian
(needs std)general_gaussian
(needs power, width)slepian
(needs width)exponential
(needs tau).
In [53]: ser = pd.Series(np.random.randn(10), ....: index=pd.date_range('1/1/2000', periods=10)) ....: In [54]: ser.rolling(window=5, win_type='triang').mean() Out[54]: 2000-01-01 NaN 2000-01-02 NaN 2000-01-03 NaN 2000-01-04 NaN 2000-01-05 -1.037870 2000-01-06 -0.767705 2000-01-07 -0.383197 2000-01-08 -0.395513 2000-01-09 -0.558440 2000-01-10 -0.672416 Freq: D, dtype: float64
Note that the boxcar
window is equivalent to mean()
In [55]: ser.rolling(window=5, win_type='boxcar').mean() Out[55]: 2000-01-01 NaN 2000-01-02 NaN 2000-01-03 NaN 2000-01-04 NaN 2000-01-05 -0.841164 2000-01-06 -0.779948 2000-01-07 -0.565487 2000-01-08 -0.502815 2000-01-09 -0.553755 2000-01-10 -0.472211 Freq: D, dtype: float64 In [56]: ser.rolling(window=5).mean() Out[56]: 2000-01-01 NaN 2000-01-02 NaN 2000-01-03 NaN 2000-01-04 NaN 2000-01-05 -0.841164 2000-01-06 -0.779948 2000-01-07 -0.565487 2000-01-08 -0.502815 2000-01-09 -0.553755 2000-01-10 -0.472211 Freq: D, dtype: float64
For some windowing functions, additional parameters must be specified:
In [57]: ser.rolling(window=5, win_type='gaussian').mean(std=0.1) Out[57]: 2000-01-01 NaN 2000-01-02 NaN 2000-01-03 NaN 2000-01-04 NaN 2000-01-05 -1.309989 2000-01-06 -1.153000 2000-01-07 0.606382 2000-01-08 -0.681101 2000-01-09 -0.289724 2000-01-10 -0.996632 Freq: D, dtype: float64
Note
For .sum()
with a win_type
, there is no normalization done to the weights for the window. Passing custom weights of [1, 1, 1]
will yield a different result than passing weights of [2, 2, 2]
, for example. When passing a win_type
instead of explicitly specifying the weights, the weights are already normalized so that the largest weight is 1.
In contrast, the nature of the .mean()
calculation is such that the weights are normalized with respect to each other. Weights of [1, 1, 1]
and [2, 2, 2]
yield the same result.
Time-aware rolling
New in version 0.19.0.
New in version 0.19.0 are the ability to pass an offset (or convertible) to a .rolling()
method and have it produce variable sized windows based on the passed time window. For each time point, this includes all preceding values occurring within the indicated time delta.
This can be particularly useful for a non-regular time frequency index.
In [58]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ....: index=pd.date_range('20130101 09:00:00', ....: periods=5, ....: freq='s')) ....: In [59]: dft Out[59]: B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:01 1.0 2013-01-01 09:00:02 2.0 2013-01-01 09:00:03 NaN 2013-01-01 09:00:04 4.0
This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.
In [60]: dft.rolling(2).sum() Out[60]: B 2013-01-01 09:00:00 NaN 2013-01-01 09:00:01 1.0 2013-01-01 09:00:02 3.0 2013-01-01 09:00:03 NaN 2013-01-01 09:00:04 NaN In [61]: dft.rolling(2, min_periods=1).sum() Out[61]: B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:01 1.0 2013-01-01 09:00:02 3.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:04 4.0
Specifying an offset allows a more intuitive specification of the rolling frequency.
In [62]: dft.rolling('2s').sum() Out[62]: B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:01 1.0 2013-01-01 09:00:02 3.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:04 4.0
Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.
In [63]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ....: index=pd.Index([pd.Timestamp('20130101 09:00:00'), ....: pd.Timestamp('20130101 09:00:02'), ....: pd.Timestamp('20130101 09:00:03'), ....: pd.Timestamp('20130101 09:00:05'), ....: pd.Timestamp('20130101 09:00:06')], ....: name='foo')) ....: In [64]: dft Out[64]: B foo 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 In [65]: dft.rolling(2).sum() Out[65]: B foo 2013-01-01 09:00:00 NaN 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 NaN
Using the time-specification generates variable windows for this sparse data.
In [66]: dft.rolling('2s').sum() Out[66]: B foo 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0
Furthermore, we now allow an optional on
parameter to specify a column (rather than the default of the index) in a DataFrame.
In [67]: dft = dft.reset_index() In [68]: dft Out[68]: foo B 0 2013-01-01 09:00:00 0.0 1 2013-01-01 09:00:02 1.0 2 2013-01-01 09:00:03 2.0 3 2013-01-01 09:00:05 NaN 4 2013-01-01 09:00:06 4.0 In [69]: dft.rolling('2s', on='foo').sum() Out[69]: foo B 0 2013-01-01 09:00:00 0.0 1 2013-01-01 09:00:02 1.0 2 2013-01-01 09:00:03 3.0 3 2013-01-01 09:00:05 NaN 4 2013-01-01 09:00:06 4.0
Rolling window endpoints
New in version 0.20.0.
The inclusion of the interval endpoints in rolling window calculations can be specified with the closed
parameter:
closed | Description | Default for |
---|---|---|
right | close right endpoint | time-based windows |
left | close left endpoint | |
both | close both endpoints | fixed windows |
neither | open endpoints |
For example, having the right endpoint open is useful in many problems that require that there is no contamination from present information back to past information. This allows the rolling window to compute statistics “up to that point in time”, but not including that point in time.
In [70]: df = pd.DataFrame({'x': 1}, ....: index=[pd.Timestamp('20130101 09:00:01'), ....: pd.Timestamp('20130101 09:00:02'), ....: pd.Timestamp('20130101 09:00:03'), ....: pd.Timestamp('20130101 09:00:04'), ....: pd.Timestamp('20130101 09:00:06')]) ....: In [71]: df["right"] = df.rolling('2s', closed='right').x.sum() # default In [72]: df["both"] = df.rolling('2s', closed='both').x.sum() In [73]: df["left"] = df.rolling('2s', closed='left').x.sum() In [74]: df["neither"] = df.rolling('2s', closed='neither').x.sum() In [75]: df Out[75]: x right both left neither 2013-01-01 09:00:01 1 1.0 1.0 NaN NaN 2013-01-01 09:00:02 1 2.0 2.0 1.0 1.0 2013-01-01 09:00:03 1 2.0 3.0 2.0 1.0 2013-01-01 09:00:04 1 2.0 3.0 2.0 1.0 2013-01-01 09:00:06 1 1.0 2.0 1.0 NaN
Currently, this feature is only implemented for time-based windows. For fixed windows, the closed parameter cannot be set and the rolling window will always have both endpoints closed.
#Time-aware rolling vs. resampling
Using .rolling()
with a time-based index is quite similar to resampling. They both operate and perform reductive operations on time-indexed pandas objects.
When using .rolling()
with an offset. The offset is a time-delta. Take a backwards-in-time looking window, and aggregate all of the values in that window (including the end-point, but not the start-point). This is the new value at that point in the result. These are variable sized windows in time-space for each point of the input. You will get a same sized result as the input.
When using .resample()
with an offset. Construct a new index that is the frequency of the offset. For each frequency bin, aggregate points from the input within a backwards-in-time looking window that fall in that bin. The result of this aggregation is the output for that frequency point. The windows are fixed size in the frequency space. Your result will have the shape of a regular frequency between the min and the max of the original input object.
To summarize, .rolling()
is a time-based window operation, while .resample()
is a frequency-based window operation.
#Centering windows
By default the labels are set to the right edge of the window, but a center
keyword is available so the labels can be set at the center.
In [76]: ser.rolling(window=5).mean() Out[76]: 2000-01-01 NaN 2000-01-02 NaN 2000-01-03 NaN 2000-01-04 NaN 2000-01-05 -0.841164 2000-01-06 -0.779948 2000-01-07 -0.565487 2000-01-08 -0.502815 2000-01-09 -0.553755 2000-01-10 -0.472211 Freq: D, dtype: float64 In [77]: ser.rolling(window=5, center=True).mean() Out[77]: 2000-01-01 NaN 2000-01-02 NaN 2000-01-03 -0.841164 2000-01-04 -0.779948 2000-01-05 -0.565487 2000-01-06 -0.502815 2000-01-07 -0.553755 2000-01-08 -0.472211 2000-01-09 NaN 2000-01-10 NaN Freq: D, dtype: float64
Binary window functions
cov()
(opens new window)and corr()
(opens new window)can compute moving window statistics about two Series
or any combination of DataFrame/Series
or DataFrame/DataFrame
. Here is the behavior in each case:
- two
Series
: compute the statistic for the pairing. DataFrame/Series
: compute the statistics for each column of the DataFrame with the passed Series, thus returning a DataFrame.DataFrame/DataFrame
: by default compute the statistic for matching column names, returning a DataFrame. If the keyword argumentpairwise=True
is passed then computes the statistic for each pair of columns, returning aMultiIndexed DataFrame
whoseindex
are the dates in question (see the next section).
For example:
In [78]: df = pd.DataFrame(np.random.randn(1000, 4), ....: index=pd.date_range('1/1/2000', periods=1000), ....: columns=['A', 'B', 'C', 'D']) ....: In [79]: df = df.cumsum() In [80]: df2 = df[:20] In [81]: df2.rolling(window=5).corr(df2['B']) Out[81]: A B C D 2000-01-01 NaN NaN NaN NaN 2000-01-02 NaN NaN NaN NaN 2000-01-03 NaN NaN NaN NaN 2000-01-04 NaN NaN NaN NaN 2000-01-05 0.768775 1.0 -0.977990 0.800252 ... ... ... ... ... 2000-01-16 0.691078 1.0 0.807450 -0.939302 2000-01-17 0.274506 1.0 0.582601 -0.902954 2000-01-18 0.330459 1.0 0.515707 -0.545268 2000-01-19 0.046756 1.0 -0.104334 -0.419799 2000-01-20 -0.328241 1.0 -0.650974 -0.777777 [20 rows x 4 columns]
Computing rolling pairwise covariances and correlations
In financial data analysis and other fields it’s common to compute covariance and correlation matrices for a collection of time series. Often one is also interested in moving-window covariance and correlation matrices. This can be done by passing the pairwise
keyword argument, which in the case of DataFrame
inputs will yield a MultiIndexed DataFrame
whose index
are the dates in question. In the case of a single DataFrame argument the pairwise
argument can even be omitted:
Note
Missing values are ignored and each entry is computed using the pairwise complete observations. Please see the covariance section for caveats associated with this method of calculating covariance and correlation matrices.
In [82]: covs = (df[['B', 'C', 'D']].rolling(window=50) ....: .cov(df[['A', 'B', 'C']], pairwise=True)) ....: In [83]: covs.loc['2002-09-22':] Out[83]: B C D 2002-09-22 A 1.367467 8.676734 -8.047366 B 3.067315 0.865946 -1.052533 C 0.865946 7.739761 -4.943924 2002-09-23 A 0.910343 8.669065 -8.443062 B 2.625456 0.565152 -0.907654 C 0.565152 7.825521 -5.367526 2002-09-24 A 0.463332 8.514509 -8.776514 B 2.306695 0.267746 -0.732186 C 0.267746 7.771425 -5.696962 2002-09-25 A 0.467976 8.198236 -9.162599 B 2.307129 0.267287 -0.754080 C 0.267287 7.466559 -5.822650 2002-09-26 A 0.545781 7.899084 -9.326238 B 2.311058 0.322295 -0.844451 C 0.322295 7.038237 -5.684445 In [84]: correls = df.rolling(window=50).corr() In [85]: correls.loc['2002-09-22':] Out[85]: A B C D 2002-09-22 A 1.000000 0.186397 0.744551 -0.769767 B 0.186397 1.000000 0.177725 -0.240802 C 0.744551 0.177725 1.000000 -0.712051 D -0.769767 -0.240802 -0.712051 1.000000 2002-09-23 A 1.000000 0.134723 0.743113 -0.758758 ... ... ... ... ... 2002-09-25 D -0.739160 -0.164179 -0.704686 1.000000 2002-09-26 A 1.000000 0.087756 0.727792 -0.736562 B 0.087756 1.000000 0.079913 -0.179477 C 0.727792 0.079913 1.000000 -0.692303 D -0.736562 -0.179477 -0.692303 1.000000 [20 rows x 4 columns]
You can efficiently retrieve the time series of correlations between two columns by reshaping and indexing:
In [86]: correls.unstack(1)[('A', 'C')].plot() Out[86]: <matplotlib.axes._subplots.AxesSubplot at 0x7f65f8dc79e8>