分位数离散化训练 (QuantileDiscretizerTrainBatchOp)
Java 类名:com.alibaba.alink.operator.batch.feature.QuantileDiscretizerTrainBatchOp
Python 类名:QuantileDiscretizerTrainBatchOp
功能介绍
分位点离散可以计算选定列的分位点,然后使用这些分位点进行离散化。
生成选中列对应的q-quantile,其中可以所有列指定一个,也可以每一列对应一个
编码结果
Encode ——> INDEX
预测结果为单个token的index
Encode ——> VECTOR
预测结果为稀疏向量:
1. dropLast为true,向量中非零元个数为0或者1 2. dropLast为false,向量中非零元个数必定为1
Encode ——> ASSEMBLED_VECTOR
预测结果为稀疏向量,是预测选择列中,各列预测为VECTOR时,按照选择顺序ASSEMBLE的结果。
向量维度
Encode ——> Vector
vectorSize = numBuckets - dropLast(true: 1, false: 0) + (handleInvalid: keep(1), skip(0), error(0))
numBuckets: 训练参数 dropLast: 预测参数 handleInvalid: 预测参数
Token index
Encode ——> Vector
1. 正常数据: 唯一的非零元为数据所在的bucket,若 dropLast为true, 最大的bucket的值会被丢掉,预测结果为全零元 2. null: 2.1 handleInvalid为keep: 唯一的非零元为:numBuckets - dropLast(true: 1, false: 0) 2.2 handleInvalid为skip: null 2.3 handleInvalid为error: 报错
参数说明
名称 |
中文名称 |
描述 |
类型 |
是否必须? |
默认值 |
selectedCols |
选择的列名 |
计算列对应的列名列表 |
String[] |
✓ |
|
leftOpen |
是否左开右闭 |
左开右闭为true,左闭右开为false |
Boolean |
true |
|
numBuckets |
quantile个数 |
quantile个数,对所有列有效。 |
Integer |
2 |
|
numBucketsArray |
quantile个数 |
quantile个数,每一列对应数组中一个元素。 |
Integer[] |
null |
代码示例
Python 代码
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", 1, 1, 2.0, True], ["c", 1, 2, -3.0, True], ["a", 2, 2, 2.0, False], ["c", 0, 0, 0.0, False] ]) batchSource = BatchOperator.fromDataframe( df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean') streamSource = StreamOperator.fromDataframe( df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean') trainOp = QuantileDiscretizerTrainBatchOp() .setSelectedCols(['f_double']) .setNumBuckets(8) .linkFrom(batchSource) predictBatchOp = QuantileDiscretizerPredictBatchOp() .setSelectedCols(['f_double']) predictStreamOp = QuantileDiscretizerPredictStreamOp(trainOp) .setSelectedCols(['f_double']) predictBatchOp.linkFrom(trainOp, batchSource).print() predictStreamOp.linkFrom(streamSource) .print() StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerPredictBatchOp; import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.feature.QuantileDiscretizerPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class QuantileDiscretizerTrainBatchOpTest { @Test public void testQuantileDiscretizerTrainBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("a", 1, 1, 2.0, true), Row.of("c", 1, 2, -3.0, true), Row.of("a", 2, 2, 2.0, false), Row.of("c", 0, 0, 0.0, false) ); BatchOperator <?> batchSource = new MemSourceBatchOp(df, "f_string string, f_long int, f_int int, f_double double, f_boolean boolean"); StreamOperator <?> streamSource = new MemSourceStreamOp(df, "f_string string, f_long int, f_int int, f_double double, f_boolean boolean"); BatchOperator <?> trainOp = new QuantileDiscretizerTrainBatchOp() .setSelectedCols("f_double") .setNumBuckets(8) .linkFrom(batchSource); BatchOperator <?> predictBatchOp = new QuantileDiscretizerPredictBatchOp() .setSelectedCols("f_double"); predictBatchOp.linkFrom(trainOp, batchSource).print(); StreamOperator <?> predictStreamOp = new QuantileDiscretizerPredictStreamOp(trainOp) .setSelectedCols("f_double"); predictStreamOp.linkFrom(streamSource).print(); StreamOperator.execute(); }
运行结果
f_string |
f_long |
f_int |
f_double |
f_boolean |
a |
1 |
1 |
2 |
true |
c |
1 |
2 |
0 |
true |
a |
2 |
2 |
2 |
false |
c |
0 |
0 |
1 |
false |
分位数离散化预测 (QuantileDiscretizerPredictBatchOp)
Java 类名:com.alibaba.alink.operator.batch.feature.QuantileDiscretizerPredictBatchOp
Python 类名:QuantileDiscretizerPredictBatchOp
功能介绍
分位点离散可以计算选定列的分位点,然后使用这些分位点进行离散化。
生成选中列对应的q-quantile,其中可以所有列指定一个,也可以每一列对应一个
编码结果
Encode ——> INDEX
预测结果为单个token的index
Encode ——> VECTOR
预测结果为稀疏向量:
1. dropLast为true,向量中非零元个数为0或者1 2. dropLast为false,向量中非零元个数必定为1
Encode ——> ASSEMBLED_VECTOR
预测结果为稀疏向量,是预测选择列中,各列预测为VECTOR时,按照选择顺序ASSEMBLE的结果。
向量维度
Encode ——> Vector
vectorSize = numBuckets - dropLast(true: 1, false: 0) + (handleInvalid: keep(1), skip(0), error(0))
numBuckets: 训练参数 dropLast: 预测参数 handleInvalid: 预测参数
Token index
Encode ——> Vector
1. 正常数据: 唯一的非零元为数据所在的bucket,若 dropLast为true, 最大的bucket的值会被丢掉,预测结果为全零元 2. null: 2.1 handleInvalid为keep: 唯一的非零元为:numBuckets - dropLast(true: 1, false: 0) 2.2 handleInvalid为skip: null 2.3 handleInvalid为error: 报错
参数说明
名称 |
中文名称 |
描述 |
类型 |
是否必须? |
默认值 |
selectedCols |
选择的列名 |
计算列对应的列名列表 |
String[] |
✓ |
|
dropLast |
是否删除最后一个元素 |
删除最后一个元素是为了保证线性无关性。默认true |
Boolean |
true |
|
encode |
编码方法 |
编码方法 |
String |
"INDEX" |
|
handleInvalid |
未知token处理策略 |
未知token处理策略。"keep"表示用最大id加1代替, "skip"表示补null, "error"表示抛异常 |
String |
"KEEP" |
|
outputCols |
输出结果列列名数组 |
输出结果列列名数组,可选,默认null |
String[] |
null |
|
reservedCols |
算法保留列名 |
算法保留列 |
String[] |
null |
|
numThreads |
组件多线程线程个数 |
组件多线程线程个数 |
Integer |
1 |
|
modelStreamFilePath |
模型流的文件路径 |
模型流的文件路径 |
String |
null |
|
modelStreamScanInterval |
扫描模型路径的时间间隔 |
描模型路径的时间间隔,单位秒 |
Integer |
10 |
|
modelStreamStartTime |
模型流的起始时间 |
模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) |
String |
null |
代码示例
Python 代码
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", 1, 1, 2.0, True], ["c", 1, 2, -3.0, True], ["a", 2, 2, 2.0, False], ["c", 0, 0, 0.0, False] ]) batchSource = BatchOperator.fromDataframe( df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean') streamSource = StreamOperator.fromDataframe( df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean') trainOp = QuantileDiscretizerTrainBatchOp() .setSelectedCols(['f_double']) .setNumBuckets(8) .linkFrom(batchSource) predictBatchOp = QuantileDiscretizerPredictBatchOp() .setSelectedCols(['f_double']) predictStreamOp = QuantileDiscretizerPredictStreamOp(trainOp) .setSelectedCols(['f_double']) predictBatchOp.linkFrom(trainOp, batchSource).print() predictStreamOp.linkFrom(streamSource) .print() StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerPredictBatchOp; import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.feature.QuantileDiscretizerPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class QuantileDiscretizerPredictBatchOpTest { @Test public void testQuantileDiscretizerPredictBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("a", 1, 1, 2.0, true), Row.of("c", 1, 2, -3.0, true), Row.of("a", 2, 2, 2.0, false), Row.of("c", 0, 0, 0.0, false) ); BatchOperator <?> batchSource = new MemSourceBatchOp(df, "f_string string, f_long int, f_int int, f_double double, f_boolean boolean"); StreamOperator <?> streamSource = new MemSourceStreamOp(df, "f_string string, f_long int, f_int int, f_double double, f_boolean boolean"); BatchOperator <?> trainOp = new QuantileDiscretizerTrainBatchOp() .setSelectedCols("f_double") .setNumBuckets(8) .linkFrom(batchSource); BatchOperator <?> predictBatchOp = new QuantileDiscretizerPredictBatchOp() .setSelectedCols("f_double"); predictBatchOp.linkFrom(trainOp, batchSource).print(); StreamOperator <?> predictStreamOp = new QuantileDiscretizerPredictStreamOp(trainOp) .setSelectedCols("f_double"); predictStreamOp.linkFrom(streamSource).print(); StreamOperator.execute(); } }
运行结果
f_string |
f_long |
f_int |
f_double |
f_boolean |
a |
1 |
1 |
2 |
true |
c |
1 |
2 |
0 |
true |
a |
2 |
2 |
2 |
false |
c |
0 |
0 |
1 |
false |