zoukankan      html  css  js  c++  java
  • ALINK(三十):特征工程(九)特征选择(一)主成分分析(PcaTrainBatchOp/PcaPredictBatchOp)

    主成分分析训练 (PcaTrainBatchOp)

    Java 类名:com.alibaba.alink.operator.batch.feature.PcaTrainBatchOp

    Python 类名:PcaTrainBatchOp

    功能介绍

    主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关,作为新的综合指标。详细介绍请见维基百科链接wiki

    参数说明

    名称

    中文名称

    描述

    类型

    是否必须?

    默认值

    k

    降维后的维度

    降维后的维度

    Integer

     

    calculationType

    计算类型

    计算类型,包含"CORR", "COV"两种。

    String

     

    "CORR"

    selectedCols

    选中的列名数组

    计算列对应的列名列表

    String[]

     

    null

    vectorCol

    向量列名

    向量列对应的列名,默认值是null

    String

     

    null

    代码示例

    Python 代码

    from pyalink.alink import *
    import pandas as pd
    useLocalEnv(1)
    df = pd.DataFrame([
            [0.0,0.0,0.0],
            [0.1,0.2,0.1],
            [0.2,0.2,0.8],
            [9.0,9.5,9.7],
            [9.1,9.1,9.6],
            [9.2,9.3,9.9]
    ])
    # batch source 
    inOp = BatchOperator.fromDataframe(df, schemaStr='x1 double, x2 double, x3 double')
    trainOp = PcaTrainBatchOp()
           .setK(2)
           .setSelectedCols(["x1","x2","x3"])
    predictOp = PcaPredictBatchOp()
            .setPredictionCol("pred")
    # batch train
    inOp.link(trainOp)
    # batch predict
    predictOp.linkFrom(trainOp,inOp)
    predictOp.print()
    # stream predict
    inStreamOp = StreamOperator.fromDataframe(df, schemaStr='x1 double, x2 double, x3 double')
    predictStreamOp = PcaPredictStreamOp(trainOp)
            .setPredictionCol("pred")
    predictStreamOp.linkFrom(inStreamOp)
    predictStreamOp.print()
    StreamOperator.execute()

    Java 代码

    import org.apache.flink.types.Row;
    import com.alibaba.alink.operator.batch.BatchOperator;
    import com.alibaba.alink.operator.batch.feature.PcaPredictBatchOp;
    import com.alibaba.alink.operator.batch.feature.PcaTrainBatchOp;
    import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
    import com.alibaba.alink.operator.stream.StreamOperator;
    import com.alibaba.alink.operator.stream.feature.PcaPredictStreamOp;
    import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
    import org.junit.Test;
    import java.util.Arrays;
    import java.util.List;
    public class PcaTrainBatchOpTest {
      @Test
      public void testPcaTrainBatchOp() throws Exception {
        List <Row> df = Arrays.asList(
          Row.of(0.0, 0.0, 0.0),
          Row.of(0.1, 0.2, 0.1),
          Row.of(0.2, 0.2, 0.8),
          Row.of(9.0, 9.5, 9.7),
          Row.of(9.1, 9.1, 9.6),
          Row.of(9.2, 9.3, 9.9)
        );
        BatchOperator <?> inOp = new MemSourceBatchOp(df, "x1 double, x2 double, x3 double");
        BatchOperator <?> trainOp = new PcaTrainBatchOp()
          .setK(2)
          .setSelectedCols("x1", "x2", "x3");
        BatchOperator <?> predictOp = new PcaPredictBatchOp()
          .setPredictionCol("pred");
        inOp.link(trainOp);
        predictOp.linkFrom(trainOp, inOp);
        predictOp.print();
        StreamOperator <?> inStreamOp = new MemSourceStreamOp(df, "x1 double, x2 double, x3 double");
        StreamOperator <?> predictStreamOp = new PcaPredictStreamOp(trainOp)
          .setPredictionCol("pred");
        predictStreamOp.linkFrom(inStreamOp);
        predictStreamOp.print();
        StreamOperator.execute();
      }
    }

    运行结果

    x1

    x2

    x3

    pred

    9.0

    9.5

    9.7

    3.2280384305400736,1.1516225426477789E-4

    0.2

    0.2

    0.8

    0.13565076707329407,0.09003329494282108

    9.2

    9.3

    9.9

    3.250783163664603,0.0456526246528135

    9.1

    9.1

    9.6

    3.182618319978973,0.027469531992220464

    0.1

    0.2

    0.1

    0.045855205015063565,-0.012182917696915518

    0.0

    0.0

    0.0

    0.0,0.0

    主成分分析预测 (PcaPredictBatchOp)

    Java 类名:com.alibaba.alink.operator.batch.feature.PcaPredictBatchOp

    Python 类名:PcaPredictBatchOp

    功能介绍

    主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关,作为新的综合指标。详细介绍请见维基百科链接wiki

    参数说明

    名称

    中文名称

    描述

    类型

    是否必须?

    默认值

    predictionCol

    预测结果列名

    预测结果列名

    String

     

    reservedCols

    算法保留列名

    算法保留列

    String[]

     

    null

    vectorCol

    向量列名

    向量列对应的列名,默认值是null

    String

     

    null

    numThreads

    组件多线程线程个数

    组件多线程线程个数

    Integer

     

    1

    modelStreamFilePath

    模型流的文件路径

    模型流的文件路径

    String

     

    null

    modelStreamScanInterval

    扫描模型路径的时间间隔

    描模型路径的时间间隔,单位秒

    Integer

     

    10

    modelStreamStartTime

    模型流的起始时间

    模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s)

    String

     

    null

    代码示例

    Python 代码

    from pyalink.alink import *
    import pandas as pd
    useLocalEnv(1)
    df = pd.DataFrame([
            [0.0,0.0,0.0],
            [0.1,0.2,0.1],
            [0.2,0.2,0.8],
            [9.0,9.5,9.7],
            [9.1,9.1,9.6],
            [9.2,9.3,9.9]
    ])
    # batch source 
    inOp = BatchOperator.fromDataframe(df, schemaStr='x1 double, x2 double, x3 double')
    trainOp = PcaTrainBatchOp()
           .setK(2)
           .setSelectedCols(["x1","x2","x3"])
    predictOp = PcaPredictBatchOp()
            .setPredictionCol("pred")
    # batch train
    inOp.link(trainOp)
    # batch predict
    predictOp.linkFrom(trainOp,inOp)
    predictOp.print()
    # stream predict
    inStreamOp = StreamOperator.fromDataframe(df, schemaStr='x1 double, x2 double, x3 double')
    predictStreamOp = PcaPredictStreamOp(trainOp)
            .setPredictionCol("pred")
    predictStreamOp.linkFrom(inStreamOp)
    predictStreamOp.print()
    StreamOperator.execute()

    Java 代码

    import org.apache.flink.types.Row;
    import com.alibaba.alink.operator.batch.BatchOperator;
    import com.alibaba.alink.operator.batch.feature.PcaPredictBatchOp;
    import com.alibaba.alink.operator.batch.feature.PcaTrainBatchOp;
    import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
    import com.alibaba.alink.operator.stream.StreamOperator;
    import com.alibaba.alink.operator.stream.feature.PcaPredictStreamOp;
    import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
    import org.junit.Test;
    import java.util.Arrays;
    import java.util.List;
    public class PcaPredictBatchOpTest {
      @Test
      public void testPcaPredictBatchOp() throws Exception {
        List <Row> df = Arrays.asList(
          Row.of(0.0, 0.0, 0.0),
          Row.of(0.1, 0.2, 0.1),
          Row.of(0.2, 0.2, 0.8),
          Row.of(9.0, 9.5, 9.7),
          Row.of(9.1, 9.1, 9.6),
          Row.of(9.2, 9.3, 9.9)
        );
        BatchOperator <?> inOp = new MemSourceBatchOp(df, "x1 double, x2 double, x3 double");
        BatchOperator <?> trainOp = new PcaTrainBatchOp()
          .setK(2)
          .setSelectedCols("x1", "x2", "x3");
        BatchOperator <?> predictOp = new PcaPredictBatchOp()
          .setPredictionCol("pred");
        inOp.link(trainOp);
        predictOp.linkFrom(trainOp, inOp);
        predictOp.print();
        StreamOperator <?> inStreamOp = new MemSourceStreamOp(df, "x1 double, x2 double, x3 double");
        StreamOperator <?> predictStreamOp = new PcaPredictStreamOp(trainOp)
          .setPredictionCol("pred");
        predictStreamOp.linkFrom(inStreamOp);
        predictStreamOp.print();
        StreamOperator.execute();
      }
    }

    运行结果

    x1

    x2

    x3

    pred

    9.0

    9.5

    9.7

    3.2280384305400736,1.1516225426477789E-4

    0.2

    0.2

    0.8

    0.13565076707329407,0.09003329494282108

    9.2

    9.3

    9.9

    3.250783163664603,0.0456526246528135

    9.1

    9.1

    9.6

    3.182618319978973,0.027469531992220464

    0.1

    0.2

    0.1

    0.045855205015063565,-0.012182917696915518

    0.0

    0.0

    0.0

    0.0,0.0

  • 相关阅读:
    python 异常处理
    python 文件
    python 面向对象程序设计基础
    python 数据结构与算法
    python中的基本数据结构
    关于python程序设计流程(未完结)
    python的字典(dict)的键值对存储规则
    python中字符串的方法及注释
    Element.requestFullscreen()方法
    oncontextmenu 事件
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/14901562.html
Copyright © 2011-2022 走看看