zoukankan      html  css  js  c++  java
  • 机器学习sklearn(十二): 特征工程(三)特征组合与交叉(一)多项式特征

    在机器学习中,通过增加一些输入数据的非线性特征来增加模型的复杂度通常是有效的。一个简单通用的办法是使用多项式特征,这可以获得特征的更高维度和互相间关系的项。这在 PolynomialFeatures 中实现:

    >>> import numpy as np
    >>> from sklearn.preprocessing import PolynomialFeatures
    >>> X = np.arange(6).reshape(3, 2)
    >>> X                                                 
    array([[0, 1],
     [2, 3],
     [4, 5]])
    >>> poly = PolynomialFeatures(2)
    >>> poly.fit_transform(X)                             
    array([[  1.,   0.,   1.,   0.,   0.,   1.],
     [  1.,   2.,   3.,   4.,   6.,   9.],
     [  1.,   4.,   5.,  16.,  20.,  25.]])

    >>> X = np.arange(9).reshape(3, 3)
    >>> X                                                 
    array([[0, 1, 2],
     [3, 4, 5],
     [6, 7, 8]])
    >>> poly = PolynomialFeatures(degree=3, interaction_only=True)
    >>> poly.fit_transform(X)                             
    array([[   1.,    0.,    1.,    2.,    0.,    0.,    2.,    0.],
     [   1.,    3.,    4.,    5.,   12.,   15.,   20.,   60.],
     [   1.,    6.,    7.,    8.,   42.,   48.,   56.,  336.]])

    注意,当使用多项的 Kernel functions 时 ,多项式特征被隐式地在核函数中被调用(比如, sklearn.svm.SVC , sklearn.decomposition.KernelPCA )。

    创建并使用多项式特征的岭回归实例请见 Polynomial interpolation 。

    class sklearn.preprocessing.PolynomialFeatures(degree=2*interaction_only=Falseinclude_bias=Trueorder='C')

    Generate polynomial and interaction features.

    Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2].

    Parameters
    degreeint, default=2

    The degree of the polynomial features.

    interaction_onlybool, default=False

    If true, only interaction features are produced: features that are products of at most degree distinct input features (so not x[1] ** 2x[0] x[2] ** 3, etc.).

    include_biasbool, default=True

    If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model).

    order{‘C’, ‘F’}, default=’C’

    Order of output array in the dense case. ‘F’ order is faster to compute, but may slow down subsequent estimators.

    New in version 0.21.

    Attributes
    powers_ndarray of shape (n_output_features, n_input_features)

    powers_[i, j] is the exponent of the jth input in the ith output.

    n_input_features_int

    The total number of input features.

    n_output_features_int

    The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features.

    Methods

    fit(X[, y])

    Compute number of output features.

    fit_transform(X[, y])

    Fit to data, then transform it.

    get_feature_names([input_features])

    Return feature names for output features

    get_params([deep])

    Get parameters for this estimator.

    set_params(**params)

    Set the parameters of this estimator.

    transform(X)

    Transform data to polynomial features

    Examples

    >>> import numpy as np
    >>> from sklearn.preprocessing import PolynomialFeatures
    >>> X = np.arange(6).reshape(3, 2)
    >>> X
    array([[0, 1],
           [2, 3],
           [4, 5]])
    >>> poly = PolynomialFeatures(2)
    >>> poly.fit_transform(X)
    array([[ 1.,  0.,  1.,  0.,  0.,  1.],
           [ 1.,  2.,  3.,  4.,  6.,  9.],
           [ 1.,  4.,  5., 16., 20., 25.]])
    >>> poly = PolynomialFeatures(interaction_only=True)
    >>> poly.fit_transform(X)
    array([[ 1.,  0.,  1.,  0.],
           [ 1.,  2.,  3.,  6.],
           [ 1.,  4.,  5., 20.]])
  • 相关阅读:
    linux常用命令(二)文件上传下载及软件安装
    linux常用命令(一)linux开关机、重启以及文本界面与图形界面互换
    HTTP协议(一)基本概念、HTTP方法、HTTP状态码
    Martin Fowler 分层测试概念博文分享
    网络路由分析
    nginx 常见错误释义
    java解决共享资源竞争
    python操作excel及json
    一个简单的用python 实现系统登录的http接口服务实例
    Redis持久化之RDB&&AOF的区别
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/14903580.html
Copyright © 2011-2022 走看看