class sklearn.svm.SVC (C=1.0, kernel=’rbf’, degree=3, gamma=’auto_deprecated’, coef0=0.0, shrinking=True,probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1,decision_function_shape=’ovr’, random_state=None)
1 线性SVM用于分类的原理
1.1 线性SVM的损失函数详解
1.2 函数间隔与几何间隔
点到之间的距离的公式推导
证明完毕。
1.3 线性SVM的拉格朗日对偶函数和决策函数
1.3.1 将损失函数从最初形态转换为拉格朗日乘数形态
为什么要进行转换?
为什么可以进行转换?
怎样进行转换?
1.3.2 将拉格朗日函数转换为拉格朗日对偶函数
为什么要进行转换?
为什么能够进行转换?
怎样进行转换?
1.3.3 求解拉格朗日对偶函数极其后续过程
1.4 线性SVM决策过程的可视化
我们可以使用sklearn中的式子来为可视化我们的决策边界,支持向量,以及决策边界平行的两个超平面。
1. 导入需要的模块
from sklearn.datasets import make_blobs from sklearn.svm import SVC import matplotlib.pyplot as plt import numpy as np
2. 实例化数据集,可视化数据集
X,y = make_blobs(n_samples=50, centers=2, random_state=0,cluster_std=0.6) plt.scatter(X[:,0],X[:,1],c=y,s=50,cmap="rainbow") plt.xticks([]) plt.yticks([]) plt.show()
3. 画决策边界:理解函数contour
#首先要有散点图 plt.scatter(X[:,0],X[:,1],c=y,s=50,cmap="rainbow") ax = plt.gca() #获取当前的子图,如果不存在,则创建新的子图
有了这个平面,我们需要在平面上制作一个足够细的网格,来代表我们“平面上的所有点”。
4. 画决策边界:制作网格,理解函数meshgrid
#获取平面上两条坐标轴的最大值和最小值 xlim = ax.get_xlim() ylim = ax.get_ylim() #在最大值和最小值之间形成30个规律的数据 axisx = np.linspace(xlim[0],xlim[1],30) axisy = np.linspace(ylim[0],ylim[1],30) axisy,axisx = np.meshgrid(axisy,axisx) #我们将使用这里形成的二维数组作为我们contour函数中的X和Y #使用meshgrid函数将两个一维向量转换为特征矩阵 #核心是将两个特征向量广播,以便获取y.shape * x.shape这么多个坐标点的横坐标和纵坐标 xy = np.vstack([axisx.ravel(), axisy.ravel()]).T #其中ravel()是降维函数,vstack能够将多个结构一致的一维数组按行堆叠起来 #xy就是已经形成的网格,它是遍布在整个画布上的密集的点 plt.scatter(xy[:,0],xy[:,1],s=1,cmap="rainbow") #理解函数meshgrid和vstack的作用 a = np.array([1,2,3]) b = np.array([7,8]) #两两组合,会得到多少个坐标? #答案是6个,分别是 (1,7),(2,7),(3,7),(1,8),(2,8),(3,8) v1,v2 = np.meshgrid(a,b) v1 v2 v = np.vstack([v1.ravel(), v2.ravel()]).T
有了网格后,我们需要计算网格所代表的“平面上所有的点”到我们的决策边界的距离。所以我们需要我们的模型和决策边界。
5 建模,计算决策边界并找出网格上每个点到决策边界的距离
#建模,通过fit计算出对应的决策边界 clf = SVC(kernel = "linear").fit(X,y) Z = clf.decision_function(xy).reshape(axisx.shape) #重要接口decision_function,返回每个输入的样本所对应的到决策边界的距离 #然后再将这个距离转换为axisx的结构,这是由于画图的函数contour要求Z的结构必须与X和Y保持一致 #画决策边界和平行于决策边界的超平面 ax.contour(axisx,axisy,Z ,colors="k" ,levels=[-1,0,1] #画三条等高线,分别是Z为-1,Z为0和Z为1的三条线 ,alpha=0.5 ,linestyles=["--","-","--"]) ax.set_xlim(xlim) ax.set_ylim(ylim) #记得Z的本质么?是输入的样本到决策边界的距离,而contour函数中的level其实是输入了这个距离 #让我们用一个点来试试看 plt.scatter(X[:,0],X[:,1],c=y,s=50,cmap="rainbow") plt.scatter(X[10,0],X[10,1],c="black",s=50,cmap="rainbow") clf.decision_function(X[10].reshape(1,2)) plt.scatter(X[:,0],X[:,1],c=y,s=50,cmap="rainbow") ax = plt.gca() ax.contour(axisx,axisy,P ,colors="k" ,levels=[-3.33917354] ,alpha=0.5 ,linestyles=["--"])
6. 将绘图过程包装成函数
#将上述过程包装成函数: def plot_svc_decision_function(model,ax=None): if ax is None: ax = plt.gca() xlim = ax.get_xlim() ylim = ax.get_ylim() x = np.linspace(xlim[0],xlim[1],30) y = np.linspace(ylim[0],ylim[1],30) Y,X = np.meshgrid(y,x) xy = np.vstack([X.ravel(), Y.ravel()]).T P = model.decision_function(xy).reshape(X.shape) ax.contour(X, Y, P,colors="k",levels=[-1,0,1],alpha=0.5,linestyles=["--","-","--"]) ax.set_xlim(xlim) ax.set_ylim(ylim) #则整个绘图过程可以写作: clf = SVC(kernel = "linear").fit(X,y) plt.scatter(X[:,0],X[:,1],c=y,s=50,cmap="rainbow") plot_svc_decision_function(clf)
7. 探索建好的模型
clf.predict(X) #根据决策边界,对X中的样本进行分类,返回的结构为n_samples clf.score(X,y) #返回给定测试数据和标签的平均准确度 clf.support_vectors_ #返回支持向量 clf.n_support_ #返回每个类中支持向量的个数
8. 推广到非线性情况
我们之前所讲解的原理,以及绘图的过程,都是基于数据本身是线性可分的情况。如果把数据推广到非线性数据,比如说环形数据上呢?
from sklearn.datasets import make_circles X,y = make_circles(100, factor=0.1, noise=.1) X.shape y.shape plt.scatter(X[:,0],X[:,1],c=y,s=50,cmap="rainbow") plt.show()
试试看用我们已经定义的函数来划分这个数据的决策边界:
clf = SVC(kernel = "linear").fit(X,y) plt.scatter(X[:,0],X[:,1],c=y,s=50,cmap="rainbow") plot_svc_decision_function(clf)
9. 为非线性数据增加维度并绘制3D图像
#定义一个由x计算出来的新维度r r = np.exp(-(X**2).sum(1)) rlim = np.linspace(min(r),max(r),0.2) from mpl_toolkits import mplot3d #定义一个绘制三维图像的函数 #elev表示上下旋转的角度 #azim表示平行旋转的角度 def plot_3D(elev=30,azim=30,X=X,y=y): ax = plt.subplot(projection="3d") ax.scatter3D(X[:,0],X[:,1],r,c=y,s=50,cmap='rainbow') ax.view_init(elev=elev,azim=azim) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("r") plt.show() plot_3D()
可以看见,此时此刻我们的数据明显是线性可分的了:我们可以使用一个平面来将数据完全分开,并使平面的上方的所有数据点为一类,平面下方的所有数据点为另一类。
10. 将上述过程放到Jupyter Notebook中运行
#如果放到jupyter notebook中运行 from sklearn.svm import SVC import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_circles X,y = make_circles(100, factor=0.1, noise=.1) plt.scatter(X[:,0],X[:,1],c=y,s=50,cmap="rainbow") def plot_svc_decision_function(model,ax=None): if ax is None: ax = plt.gca() xlim = ax.get_xlim() ylim = ax.get_ylim() x = np.linspace(xlim[0],xlim[1],30) y = np.linspace(ylim[0],ylim[1],30) Y,X = np.meshgrid(y,x) xy = np.vstack([X.ravel(), Y.ravel()]).T P = model.decision_function(xy).reshape(X.shape) ax.contour(X, Y, P,colors="k",levels=[-1,0,1],alpha=0.5,linestyles=["--","-","--"]) ax.set_xlim(xlim) ax.set_ylim(ylim) clf = SVC(kernel = "linear").fit(X,y) plt.scatter(X[:,0],X[:,1],c=y,s=50,cmap="rainbow") plot_svc_decision_function(clf) r = np.exp(-(X**2).sum(1)) rlim = np.linspace(min(r),max(r),0.2) from mpl_toolkits import mplot3d def plot_3D(elev=30,azim=30,X=X,y=y): ax = plt.subplot(projection="3d") ax.scatter3D(X[:,0],X[:,1],r,c=y,s=50,cmap='rainbow') ax.view_init(elev=elev,azim=azim) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("r") plt.show() from ipywidgets import interact,fixed interact(plot_3D,elev=[0,30],azip=(-180,180),X=fixed(X),y=fixed(y)) plt.show()