zoukankan      html  css  js  c++  java
  • 机器学习sklearn(68):算法实例(二十五)分类(十二)SVM(三)sklearn.svm.SVC(二)

    2 非线性SVM与核函数

    2.1 SVC在非线性数据上的推广

     

    2.2 重要参数kernel

     

     

     

    clf = SVC(kernel = "rbf").fit(X,y)
    plt.scatter(X[:,0],X[:,1],c=y,s=50,cmap="rainbow")
    plot_svc_decision_function(clf)
    可以看到,决策边界被完美地找了出来。
    2.3 探索核函数在不同数据集上的表现

    1. 导入所需要的库和模块

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    from sklearn import svm
    from sklearn.datasets import make_circles, make_moons, make_blobs,make_classification
    2. 创建数据集,定义核函数的选择 
    n_samples = 100
    datasets = [
        make_moons(n_samples=n_samples, noise=0.2, random_state=0),
        make_circles(n_samples=n_samples, noise=0.2, factor=0.5, random_state=1),
        make_blobs(n_samples=n_samples, centers=2, random_state=5),
        make_classification(n_samples=n_samples,n_features = 
    2,n_informative=2,n_redundant=0, random_state=5)
     ]
    Kernel = ["linear","poly","rbf","sigmoid"] 

    #四个数据集分别是什么样子呢? for X,Y in datasets:    plt.figure(figsize=(5,4))    plt.scatter(X[:,0],X[:,1],c=Y,s=50,cmap="rainbow")

    3. 构建子图 
    nrows=len(datasets)
    ncols=len(Kernel) + 1
    fig, axes = plt.subplots(nrows, ncols,figsize=(20,16))
    4. 开始进行子图循环
    #第一层循环:在不同的数据集中循环
    for ds_cnt, (X,Y) in enumerate(datasets):
        
        #在图像中的第一列,放置原数据的分布
        ax = axes[ds_cnt, 0]
        if ds_cnt == 0:
            ax.set_title("Input data")
        ax.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired,edgecolors='k')
        ax.set_xticks(())
        ax.set_yticks(())
        
        #第二层循环:在不同的核函数中循环
        #从图像的第二列开始,一个个填充分类结果
        for est_idx, kernel in enumerate(Kernel):
            
            #定义子图位置
            ax = axes[ds_cnt, est_idx + 1]
            
            #建模
            clf = svm.SVC(kernel=kernel, gamma=2).fit(X, Y)
            score = clf.score(X, Y)
            
            #绘制图像本身分布的散点图
            ax.scatter(X[:, 0], X[:, 1], c=Y
                       ,zorder=10
                       ,cmap=plt.cm.Paired,edgecolors='k')
            #绘制支持向量
            ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=50,
                        facecolors='none', zorder=10, edgecolors='k')
            
            #绘制决策边界
            x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
            y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
            
            #np.mgrid,合并了我们之前使用的np.linspace和np.meshgrid的用法
            #一次性使用最大值和最小值来生成网格
            #表示为[起始值:结束值:步长]
            #如果步长是复数,则其整数部分就是起始值和结束值之间创建的点的数量,并且结束值被包含在内
            XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
            #np.c_,类似于np.vstack的功能
            Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]).reshape(XX.shape)
            #填充等高线不同区域的颜色
            ax.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
            #绘制等高线
            ax.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],
                        levels=[-1, 0, 1])
            
            #设定坐标轴为不显示
            ax.set_xticks(())
            ax.set_yticks(())
            
            #将标题放在第一行的顶上
            if ds_cnt == 0:
                ax.set_title(kernel)
                
            #为每张图添加分类的分数   
            ax.text(0.95, 0.06, ('%.2f' % score).lstrip('0')
                   , size=15
                   , bbox=dict(boxstyle='round', alpha=0.8, facecolor='white')
                   #为分数添加一个白色的格子作为底色
                   , transform=ax.transAxes #确定文字所对应的坐标轴,就是ax子图的坐标轴本身
                   , horizontalalignment='right' #位于坐标轴的什么方向
                   )
    plt.tight_layout()
    plt.show()

     

    2.4 探索核函数的优势和缺陷 
    看起来,除了Sigmoid核函数,其他核函数效果都还不错。但其实rbf和poly都有自己的弊端,我们使用乳腺癌数据集作为例子来展示一下:
    from sklearn.datasets import load_breast_cancer
    from sklearn.svm import SVC
    from sklearn.model_selection import train_test_split
    import matplotlib.pyplot as plt
    import numpy as np
    from time import time
    import datetime
    data = load_breast_cancer()
    X = data.data
    y = data.target
    X.shape
    np.unique(y)
    plt.scatter(X[:,0],X[:,1],c=y)
    plt.show()
    Xtrain, Xtest, Ytrain, Ytest = train_test_split(X,y,test_size=0.3,random_state=420)
    Kernel = ["linear","poly","rbf","sigmoid"]
    for kernel in Kernel:
        time0 = time()
        clf= SVC(kernel = kernel
                 , gamma="auto"
                # , degree = 1
                 , cache_size=5000
               ).fit(Xtrain,Ytrain)
        print("The accuracy under kernel %s is %f" % (kernel,clf.score(Xtest,Ytest)))
        print(datetime.datetime.fromtimestamp(time()-time0).strftime("%M:%S:%f"))

    Kernel = ["linear","rbf","sigmoid"]
    
    for kernel in Kernel:
        time0 = time()
        clf= SVC(kernel = kernel
                 , gamma="auto"
                # , degree = 1
                 , cache_size=5000
               ).fit(Xtrain,Ytrain)
        print("The accuracy under kernel %s is %f" % (kernel,clf.score(Xtest,Ytest)))
        print(datetime.datetime.fromtimestamp(time()-time0).strftime("%M:%S:%f"))

    Kernel = ["linear","poly","rbf","sigmoid"]
    
    for kernel in Kernel:
        time0 = time()
        clf= SVC(kernel = kernel
                 , gamma="auto"
                 , degree = 1
                 , cache_size=5000
               ).fit(Xtrain,Ytrain)
        print("The accuracy under kernel %s is %f" % (kernel,clf.score(Xtest,Ytest)))
        print(datetime.datetime.fromtimestamp(time()-time0).strftime("%M:%S:%f"))

    import pandas as pd
    data = pd.DataFrame(X)
    data.describe([0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.99]).T
    望去,果然数据存在严重的量纲不一的问题。我们来使用数据预处理中的标准化的类,对数据进行标准化: 
    from sklearn.preprocessing import StandardScaler
    X = StandardScaler().fit_transform(X)
    data = pd.DataFrame(X)
    data.describe([0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.99]).T
    标准化完毕后,再次让SVC在核函数中遍历,此时我们把degree的数值设定为1,观察各个核函数在去量纲后的数据上的表现: 
    Xtrain, Xtest, Ytrain, Ytest = train_test_split(X,y,test_size=0.3,random_state=420)
    Kernel = ["linear","poly","rbf","sigmoid"]
    for kernel in Kernel:
        time0 = time()
        clf= SVC(kernel = kernel
                 , gamma="auto"
                 , degree = 1
                 , cache_size=5000
               ).fit(Xtrain,Ytrain)
        print("The accuracy under kernel %s is %f" % (kernel,clf.score(Xtest,Ytest)))
        print(datetime.datetime.fromtimestamp(time()-time0).strftime("%M:%S:%f"))

    2.5 选取与核函数相关的参数:degree & gamma & coef0

     

     

    score = []
    gamma_range = np.logspace(-10, 1, 50) #返回在对数刻度上均匀间隔的数字
    for i in gamma_range:
        clf = SVC(kernel="rbf",gamma = i,cache_size=5000).fit(Xtrain,Ytrain)
        score.append(clf.score(Xtest,Ytest))
        
    print(max(score), gamma_range[score.index(max(score))])
    plt.plot(gamma_range,score)
    plt.show()

    from sklearn.model_selection import StratifiedShuffleSplit
    from sklearn.model_selection import GridSearchCV
    time0 = time()
    gamma_range = np.logspace(-10,1,20)
    coef0_range = np.linspace(0,5,10)
    param_grid = dict(gamma = gamma_range
                     ,coef0 = coef0_range)
    cv = StratifiedShuffleSplit(n_splits=5, test_size=0.3, random_state=420)
    grid = GridSearchCV(SVC(kernel = "poly",degree=1,cache_size=5000), 
    param_grid=param_grid, cv=cv)
    grid.fit(X, y)
    print("The best parameters are %s with a score of %0.5f" % (grid.best_params_, 
    grid.best_score_))
    print(datetime.datetime.fromtimestamp(time()-time0).strftime("%M:%S:%f"))

    3 硬间隔与软间隔:重要参数C 

    3.1 SVM在软间隔数据上的推广 

     

     

     

     

     

     

     

     

     

     

    3.2 重要参数C 

     

    #调线性核函数
    score = []
    C_range = np.linspace(0.01,30,50)
    for i in C_range:
        clf = SVC(kernel="linear",C=i,cache_size=5000).fit(Xtrain,Ytrain)
        score.append(clf.score(Xtest,Ytest))
    print(max(score), C_range[score.index(max(score))])
    plt.plot(C_range,score)
    plt.show()
    #换rbf
    score = []
    C_range = np.linspace(0.01,30,50)
    for i in C_range:
        clf = SVC(kernel="rbf",C=i,gamma = 
    0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
        score.append(clf.score(Xtest,Ytest))
        
    print(max(score), C_range[score.index(max(score))])
    plt.plot(C_range,score)
    plt.show()
    #进一步细化
    score = []
    C_range = np.linspace(5,7,50)
    for i in C_range:
        clf = SVC(kernel="rbf",C=i,gamma = 
    0.012742749857031322,cache_size=5000).fit(Xtrain,Ytrain)
        score.append(clf.score(Xtest,Ytest))
        
    print(max(score), C_range[score.index(max(score))])
    plt.plot(C_range,score)
    plt.show()

    4 总结

  • 相关阅读:
    2016第34周三
    2016第34周二
    Spring中资源的加载ResourceLoader
    Spring的资源抽象Resource2实体类
    Spring资源抽象Resource
    SQL Server死锁产生原因及解决办法 .
    sql server中同时执行select和update语句死锁问题
    数据库死锁实例分析及解决方法
    一次查找sqlserver死锁的经历
    js和Jquery获取选中select值和文本
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/14952554.html
Copyright © 2011-2022 走看看