zoukankan      html  css  js  c++  java
  • FLINK重点原理与机制:内存(2)网络流控及反压机制剖析(一)

    0 简介

    • 网络流控的概念与背景

    • TCP 的流控机制

    • Flink TCP-based 反压机制(before V1.5)

    • Flink Credit-based 反压机制 (since V1.5)

    • 总结与思考

    1 网络流控的概念与背景

    1.1 为什么需要网络流控

    首先我们可以看下这张最精简的网络流控的图,Producer 的吞吐率是 2MB/s,Consumer 是 1MB/s,这个时候我们就会发现在网络通信的时候我们的 Producer 的速度是比 Consumer 要快的,有 1MB/s 的这样的速度差,假定我们两端都有一个 Buffer,Producer 端有一个发送用的 Send Buffer,Consumer 端有一个接收用的 Receive Buffer,在网络端的吞吐率是 2MB/s,过了 5s 后我们的 Receive Buffer 可能就撑不住了,这时候会面临两种情况:

    • 如果 Receive Buffer 是有界的,这时候新到达的数据就只能被丢弃掉了。

    • 如果 Receive Buffer 是无界的,Receive Buffer 会持续的扩张,最终会导致 Consumer 的内存耗尽。

    1.2. 网络流控的实现:静态限速

    为了解决这个问题,我们就需要网络流控来解决上下游速度差的问题,传统的做法可以在 Producer 端实现一个类似 Rate Limiter 这样的静态限流,Producer 的发送速率是 2MB/s,但是经过限流这一层后,往 Send Buffer 去传数据的时候就会降到 1MB/s 了,这样的话 Producer 端的发送速率跟 Consumer 端的处理速率就可以匹配起来了,就不会导致上述问题。但是这个解决方案有两点限制:

    • 事先无法预估 Consumer 到底能承受多大的速率;

    • Consumer 的承受能力通常会动态地波动。

    1. 3. 网络流控的实现:动态反馈/自动反压

    针对静态限速的问题我们就演进到了动态反馈(自动反压)的机制,我们需要 Consumer 能够及时的给 Producer 做一个 feedback,即告知 Producer 能够承受的速率是多少。动态反馈分为两种: 

    • 负反馈:接受速率小于发送速率时发生,告知 Producer 降低发送速率;

    • 正反馈:发送速率小于接收速率时发生,告知 Producer 可以把发送速率提上来。

    1.4 Flink 的网络传输架构

     这张图就体现了 Flink 在做网络传输的时候基本的数据的流向,发送端在发送网络数据前要经历自己内部的一个流程,会有一个自己的 Network Buffer,在底层用 Netty 去做通信,Netty 这一层又有属于自己的 ChannelOutbound Buffer,因为最终是要通过 Socket 做网络请求的发送,所以在 Socket 也有自己的 Send Buffer,同样在接收端也有对应的三级 Buffer。学过计算机网络的时候我们应该了解到,TCP 是自带流量控制的。实际上 Flink (before V1.5)就是通过 TCP 的流控机制来实现 feedback 的。

    2  TCP 流控机制

    根据下图我们来简单的回顾一下 TCP 包的格式结构。首先,他有 Sequence number 这样一个机制给每个数据包做一个编号,还有 ACK number 这样一个机制来确保 TCP 的数据传输是可靠的,除此之外还有一个很重要的部分就是 Window Size,接收端在回复消息的时候会通过 Window Size 告诉发送端还可以发送多少数据。 

     2.1 TCP 流控:滑动窗口

     TCP 的流控就是基于滑动窗口的机制,现在我们有一个 Socket 的发送端和一个 Socket 的接收端,目前我们的发送端的速率是我们接收端的 3 倍,这样会发生什么样的一个情况呢?假定初始的时候我们发送的 window 大小是 3,然后我们接收端的 window 大小是固定的,就是接收端的 Buffer 大小为 5。

     首先,发送端会一次性发 3 个 packets,将 1,2,3 发送给接收端,接收端接收到后会将这 3 个 packets 放到 Buffer 里去。

     接收端一次消费 1 个 packet,这时候 1 就已经被消费了,然后我们看到接收端的滑动窗口会往前滑动一格,这时候 2,3 还在 Buffer 当中 而 4,5,6 是空出来的,所以接收端会给发送端发送 ACK = 4 ,代表发送端可以从 4 开始发送,同时会将 window 设置为 3 (Buffer 的大小 5 减去已经存下的 2 和 3),发送端接收到回应后也会将他的滑动窗口向前移动到 4,5,6。

     这时候发送端将 4,5,6 发送,接收端也能成功的接收到 Buffer 中去。

     到这一阶段后,接收端就消费到 2 了,同样他的窗口也会向前滑动一个,这时候他的 Buffer 就只剩一个了,于是向发送端发送 ACK = 7、window = 1。发送端收到之后滑动窗口也向前移,但是这个时候就不能移动 3 格了,虽然发送端的速度允许发 3 个 packets 但是 window 传值已经告知只能接收一个,所以他的滑动窗口就只能往前移一格到 7 ,这样就达到了限流的效果,发送端的发送速度从 3 降到 1。

    我们再看一下这种情况,这时候发送端将 7 发送后,接收端接收到,但是由于接收端的消费出现问题,一直没有从 Buffer 中去取,这时候接收端向发送端发送 ACK = 8、window = 0 ,由于这个时候 window = 0,发送端是不能发送任何数据,也就会使发送端的发送速度降为 0。这个时候发送端不发送任何数据了,接收端也不进行任何的反馈了,那么如何知道消费端又开始消费了呢?

     

     TCP 当中有一个 ZeroWindowProbe 的机制,发送端会定期的发送 1 个字节的探测消息,这时候接收端就会把 window 的大小进行反馈。当接收端的消费恢复了之后,接收到探测消息就可以将 window 反馈给发送端端了从而恢复整个流程。TCP 就是通过这样一个滑动窗口的机制实现 feedback。

    参考:

    https://blog.csdn.net/litlit023/article/details/110500741

    https://www.pianshen.com/article/57621117811/

    https://blog.csdn.net/lvwenyuan_1/article/details/93490297

    https://www.jianshu.com/p/72e996b4c2bd

    https://www.bilibili.com/video/BV124411P7V9

    本文来自博客园,作者:秋华,转载请注明原文链接:https://www.cnblogs.com/qiu-hua/p/15187525.html

  • 相关阅读:
    XTU 1250 Super Fast Fourier Transform
    XTU 1249 Rolling Variance
    XTU 1243 2016
    CodeForces 710A King Moves
    CodeForces 710B Optimal Point on a Line
    HDU 4472 Count
    并查集
    高精度四件套
    Kruskal最小生成树
    [蓝桥杯]翻硬币(贪心的详解附带题目测试链接)
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/15187525.html
Copyright © 2011-2022 走看看