zoukankan      html  css  js  c++  java
  • 向量与矩阵的范数及其在matlab中的用法(norm)

    一、常数向量范数

    • (L_0) 范数

    (Vert x Vert _0overset{def}=)向量中非零元素的个数

    其在matlab中的用法:

    sum( x(:) ~= 0 )
    
    • (L_1) 范数

    (Vert x Vert_1overset{def} = sumlimits_{i=1}^{m} vert x_{i}vert = vert x_{1}vert + cdots +vert x_{m}vert),即向量元素绝对值之和

    其在matlab中的用法:

    norm(x, 1)
    
    • (L_2) 范数

    (Vert x Vert_2=(vert x_1vert^2+cdots+vert x_mvert^2)^{1/2}),即向量元素绝对值的平方和后开方

    其在matlab中的用法:

    norm(x, 2)
    
    • (L_{infty}) 范数
    • 极大无穷范数

    (Vert x Vert_{infty}= max { vert x_1vert, cdots,vert x_mvert }),即所有向量元素绝对值中的最大值

    其在matlab中的用法:

    norm(x, inf)
    
    • 极小无穷范数

    (Vert x Vert_{infty}= min { vert x_1 vert, cdots, vert x_mvert }),即所有向量元素绝对值中的最小值

    其在matlab中的用法:

    norm(x, -inf)
    

    二、矩阵范数

    诱导范数和元素形式范数是矩阵范数的两种主要类型。

    1. 诱导范数

    • (L_1) 范数(列和范数)

    (Vert A Vert_1= underset{1leqslant jleqslant n}{mathop{max }}sumlimits_{i=1}^{m}{ vert a_{ij}vert }),即所有矩阵列向量绝对值之和的最大值

    其在matlab中的用法:

    norm(A,1)
    
    • (L_2) 范数

    (Vert A Vert_2=sqrt{lambda _{i}}),其中 (lambda_i)(A^{T}A) 的最大特征值。

    其在matlab中的用法:

    norm(A,2)
    
    • (L_{infty}) 范数(行和范数)

    (Vert A Vert_{infty}= underset{1leqslant ileqslant m}{mathop{max }}sumlimits_{j=1}^{n}{vert a_{ij}vert}),即所有矩阵行向量绝对值之和的最大值

    其在matlab中的用法:

    norm(A,inf)
    

    2. "元素形式"范数

    • (L_{0}) 范数

    (Vert A Vert_0overset{def}=矩阵的非零元素的个数)

    其在matlab中的用法:

    sum(sum(A ~= 0))
    
    • (L_{1}) 范数

    (Vert A Vert_1overset{def}=sumlimits_{i=1}^{m}sumlimits_{j=1}^{n}vert a_{ij}vert),即矩阵中的每个元素绝对值之和

    其在matlab中的用法:

    sum(sum(abs(A)))
    
    • (L_{F}) 范数

    (Vert A Vert_Foverset{def}=(sumlimits_{i=1}^{m}sumlimits_{j=1}^{n}vert a_{ij}vert^2)^{1/2}),即矩阵的各个元素平方之和后开方

    其在matlab中的用法:

    norm(A,'fro')
    
    • (L_{infty}) 范数

    (Vert A Vert_{infty}= underset{i=1,cdots,m; j=1,cdots,n}{mathop{max }}{vert a_{ij}vert }),即矩阵的各个元素绝对值的最大值

    其在matlab中的用法:

    max(max(abs(A)))
    
    • 核范数

    (Vert A Vert_{*}= sumlimits_{i=1}^{n}lambda_i)(lambda_i)(A) 的奇异值,即所有矩阵奇异值之和

    其在matlab中的用法:

    sum(svd(A))
    

    本文作者:@qiuhlee
    本文为作者原创,转载请注明出处。本文地址:https://www.cnblogs.com/qiuhlee/p/9474650.html

  • 相关阅读:
    hadoop(五)scp命令copy文件和配置(完全分布式准备二)|7
    hadoop(四)centos7克隆|静态ip|机器名|映射关系|别名配置(完全分布式准备一)|6
    大数据及hadoop简要概念
    hadoop(三)伪分布模式hdfs文件处理|5
    Hadoop(二) 单节点案例grep和wordcount|4
    centos7 ip/映射/机器名变更/克隆(克隆后配置修改)|2
    centos7 NAT链接配置(静态ip/修改网卡名为eth0)|1
    Hadoop(一) centos7 jdk安装,hadoop安装|3
    hive常用函数五
    hive常用函数四
  • 原文地址:https://www.cnblogs.com/qiuhlee/p/9474650.html
Copyright © 2011-2022 走看看