zoukankan      html  css  js  c++  java
  • 3种方式实现python多线程并发处理

    标签: python奇淫技巧


    最优线程数

    • Ncpu=CPU的数量
    • Ucpu=目标CPU使用率
    • W/C=等待时间与计算时间的比率

    为保持处理器达到期望的使用率,最优的线程池的大小等于
    $$Nthreads=Ncpu*Ucpu*(1+W/C$$

    • cpu密集型任务,即$W<<C$,则$W/C≈0$,则$Nthreads=Ncpu*Ucpu$

    如果希望CPU利用率为100%,则$Nthreads=Ncpu$

    • IO密集型任务,即系统大部分时间在跟I/O交互,而这个时间线程不会占用CPU来处理,即在这个时间范围内,可以由其他线程来使用CPU,因而可以多配置一些线程。
    • 混合型任务,二者都占有一定的时间

    线城池

    对于任务数量不断增加的程序,每有一个任务就生成一个线程,最终会导致线程数量的失控。对于任务数量不端增加的程序,固定线程数量的线程池是必要的。

    方法一:使用threadpool模块

    threadpool是一个比较老的模块了,支持py2 和 py3 。

    
    import threadpool
    import time
    
    def sayhello (a):
        print("hello: "+a)
        time.sleep(2)
    
    def main():
        global result
        seed=["a","b","c"]
        start=time.time()
        task_pool=threadpool.ThreadPool(5)
        requests=threadpool.makeRequests(sayhello,seed)
        for req in requests:
            task_pool.putRequest(req)
        task_pool.wait()
        end=time.time()
        time_m = end-start
        print("time: "+str(time_m))
        start1=time.time()
        for each in seed:
            sayhello(each)
        end1=time.time()
        print("time1: "+str(end1-start1))
    
    if __name__ == '__main__':
        main(
    

    方法二:使用concurrent.futures模块

    
    from concurrent.futures import ThreadPoolExecutor
    import time
    
    import time
    from concurrent.futures import ThreadPoolExecutor, wait, as_completed
    
    ll = []
    def sayhello(a):
        print("hello: "+a)
        ll.append(a)
        time.sleep(0.8)
    
    def main():
        seed=["a","b","c","e","f","g","h"]
        start1=time.time()
        for each in seed:
            sayhello(each)
        end1=time.time()
        print("time1: "+str(end1-start1))
        start2=time.time()
        with ThreadPoolExecutor(2) as executor:
            for each in seed:
                executor.submit(sayhello,each)
        end2=time.time()
        print("time2: "+str(end2-start2))
    
    def main2():
        seed = ["a", "b", "c", "e", "f", "g", "h"]
        executor = ThreadPoolExecutor(max_workers=10)
        f_list = []
        for each in seed:
            future = executor.submit(sayhello, each)
            f_list.append(future)
        wait(f_list)
        print(ll)
        print('主线程结束')
    
    
    def main3():
        seed = ["a", "b", "c", "e", "f", "g", "h"]
        with ThreadPoolExecutor(max_workers=2) as executor:
            f_list = []
            for each in seed:
                future = executor.submit(sayhello, each)
                f_list.append(future)
            wait(f_list,return_when='ALL_COMPLETED')
            print(ll)
            print('主线程结束')
    
    if __name__ == '__main__':
        main3()
    

    方法三:使用vthread模块

    参考:https://pypi.org/project/vthr...

    demo1

    
    import vthread
     
    @vthread.pool(6)
    def some(a,b,c):
        import time;time.sleep(1)
        print(a+b+c)
     
    for i in range(10):
        some(i,i,i)
    

    demo2:分组线程池

    
    import vthread
    pool_1 = vthread.pool(5,gqueue=1) # open a threadpool with 5 threads named 1
    pool_2 = vthread.pool(2,gqueue=2) # open a threadpool with 2 threads named 2
    
    @pool_1
    def foolfunc1(num):
        time.sleep(1)
        print(f"foolstring1, test3 foolnumb1:{num}")
    
    @pool_2
    def foolfunc2(num):
        time.sleep(1)
        print(f"foolstring2, test3 foolnumb2:{num}")
    
    @pool_2
    def foolfunc3(num):
        time.sleep(1)
        print(f"foolstring3, test3 foolnumb3:{num}")
    
    for i in range(10): foolfunc1(i)
    for i in range(4): foolfunc2(i)
    for i in range(2): foolfunc3(i)
    

    来源:https://segmentfault.com/a/1190000017324613

  • 相关阅读:
    高放的c++学习笔记之函数基础
    高放的c++学习笔记之关联容器
    高放的c++学习笔记之lambda表达式
    二分图小结
    送给大一学弟学妹的几句话
    网络流小结
    后缀数组小结
    hdu5353
    UVALive 5792 Diccionário Portuñol
    概率dp小结
  • 原文地址:https://www.cnblogs.com/qixidi/p/10160646.html
Copyright © 2011-2022 走看看