传送门:>Here<
题意:给出一个有向图(有环),每个点有点权。从点S出发,经过每个点Tot可以加上点权,点可以经过多次,然而点权不能重复加多次。先要求走到某个终点E时点权最大。先要求在给定的某些终点E终,点权之和的最大值。
解题思路:
题目有点难懂。首先如果只是暴力搜索的话,由于有环会无限循环,而且环内的值只会加一次,很容易想到强连通分量缩点。然后SPFA(改一改,变成最大值)求出每个点的最大值就可以了。然而如果某一个强连通分量里有酒吧,那么走到这个强联通分量作为终点一定是可以的。因此加个判断就好了。还是很水的……
Code
Nothing
/*By QiXingzhi*/ #include <cstdio> #include <queue> #include <cstring> #define r read() #define Max(a,b) (((a)>(b)) ? (a) : (b)) #define Min(a,b) (((a)<(b)) ? (a) : (b)) typedef long long ll; using namespace std; const int MAXN = 500010; const int MAXM = 1000010; const int INF = 0x3f3f3f3f; inline int read(){ int x = 0; int w = 1; register int c = getchar(); while(c ^ '-' && (c < '0' || c > '9')) c = getchar(); if(c == '-') w = -1, c = getchar(); while(c >= '0' && c <= '9') x = (x << 3) +(x << 1) + c - '0', c = getchar(); return x * w; } bool bar[MAXN]; queue <int> q; vector <int> G[MAXN],G2[MAXN]; int N,M,dfs_clock,S,P,scc_cnt,top,_x,ans; int p[MAXN],sccno[MAXN],dfn[MAXN],low[MAXN],sta[MAXN],x[MAXN],y[MAXN],d[MAXN],val[MAXN],win[MAXN]; inline void AddEdge(int u, int v){ G[u].push_back(v); } inline void AddEdge2(int u, int v){ G2[u].push_back(v); } inline void tarjan(int u){ dfn[u] = low[u] = ++dfs_clock; sta[++top] = u; int sz = G[u].size(), v; for(int i = 0; i < sz; ++i){ v = G[u][i]; if(!dfn[v]){ tarjan(v); low[u] = Min(low[u], low[v]); } else if(!sccno[v]) low[u] = Min(low[u], dfn[v]); } int X; if(dfn[u] == low[u]){ ++scc_cnt; while(1){ X = sta[top--]; if(bar[X]) win[scc_cnt] = 1; sccno[X] = scc_cnt; val[scc_cnt] += p[X]; if(X == u) break; } } } inline void BFS(int s){ d[s] = val[s]; q.push(s); int cur,sz,v; while(!q.empty()){ cur = q.front(), q.pop(); sz = G2[cur].size(); for(int i = 0; i < sz; ++i){ v = G2[cur][i]; if(d[cur] + val[v] > d[v]){ d[v] = d[cur] + val[v]; q.push(v); } } } } int main(){ N = r, M = r; for(int i = 1; i <= M; ++i){ x[i] = r, y[i] = r; AddEdge(x[i], y[i]); } for(int i = 1; i <= N; ++i) p[i] = r; S = r, P = r; for(int i = 1; i <= P; ++i) _x = r, bar[_x] = 1; for(int i = 1; i <= N; ++i) if(!dfn[i]) tarjan(i); for(int i = 1; i <= M; ++i) if(sccno[x[i]] != sccno[y[i]]) AddEdge2(sccno[x[i]], sccno[y[i]]); BFS(sccno[S]); for(int i = 1; i <= N; ++i) if(win[i]) ans = Max(ans, d[i]); printf("%d", ans); return 0; }