zoukankan      html  css  js  c++  java
  • 贝叶斯网络之----(d-分离步骤)

    贝叶斯网络假设是指给定一个变量的父母节点,这个变量条件独立于他的非后代。

    d-separation步骤用途

    回答两类问题,

    1. 给定变量下条件独立性问题。例如,在给定D和F的情况下,A和B是否独立,$ P(A|BDF) = P(A|DF)$ 。
    2. 边际独立性问题。例如,A和B是否独立,$ P(A|B) = P(A)$ 。

    d-separation步骤流程

    1. 概率表达式中所提到节点及其祖先(不带子女,除非提到)组成的图。
    2. 父母配用无线边配对。
    3. 将所有边变成无向边。
    4. 删除所有给定变量的节点,以及他们的边。例如,在给定D和F的情况下,A和B是否独立,$ P(A|BDF) = P(A|DF)$ 。那么要删去的节点就是D和F。
    5. 解释得到的图。经过前面4步得到一个图,如果a)变量是不连接的,则独立或条件独立性满足,如果b)变量在图中是连接的。则不能保证独立或条件独立性。这里连接指的是节点之间存在一条路径。c)如果一个或多个变量在图中不存在,则独立或条件独立性满足。

    熟练之后,可知两个没有公共祖先的节点是边际独立的,但给定他们的子节点,他们就变成相关的(common effect)例如下图情形,

    下两个图是相关路径(active trails)几种情形,以及基于相关路径的两节点d-separation定义(应该和我们用上述流程得到的连接或不连接是一致的,这个是在另一个文献里找的),

    d-separation步骤例子

    给一个概率图,如下

    则,

    1. 在给定D和F的情况下,A和B是否独立,即是否有 $ P(A|BDF) = P(A|DF)$ ?

      否。四步走,如图,

    2. A和B是否(边际)独立,即 $ P(A|B) = P(A)$ ?

      是。看图,

    3. 给定C的情况下,A,B独立吗?

      否,上面提到的有名的V-结构(common effect),看图,应用步骤时注意与问题2区别,

    4. 给定C的情况下,D,E独立吗?

      是,朴素贝叶斯条件独立性假设就是这种共同祖先结构!注意,画一个点必须画他的祖先,但没有提到他的子女,就不画她的子女。看分析,

    5. D,E独立吗?

      否,

    6. 给定A,B的情况下,D,E独立吗?

      否,不同于给定C的情形,

    7. $ P(D|CEG) = P(D|C)$ ?

      转换成两个问题,a给定C时,D,E独立吗?且b给定C时,D,G独立吗?

      a是b否总体否

    参考链接:

    d-separation procedure

    no active trial

    今天很郁闷,我觉得自己很失败。但我还是要不停的做事情。

    越是绝望,越是不能停止做事情。

    好熟悉面孔,是哪部剧来着...

    img

  • 相关阅读:
    dajngo ORM查询中select_related的作用,博客主题的定制,从数据库中按照年月筛选时间
    Django数据查询中对字段进行排序
    Django验证码实现
    django登录注册验证之密码包含特殊字符,确认密码一致实现,Form验证
    django模板传入参数的处理方式与反向生成url
    在django中使用循环与条件语言
    django的模板的继承与导入
    sublime3故障收集emmet无法安装pyv8
    [SQL SERVER系列]之嵌套子查询和相关子查询
    [SQL SERVER系列]读书笔记之SQL注入漏洞和SQL调优
  • 原文地址:https://www.cnblogs.com/qizhien/p/11604594.html
Copyright © 2011-2022 走看看