Notation:
m = Number of training examples
x's = "input" variable / features
y's = "output" variable / "target" variable
(x, y) - one training example
(x(i), yii)) - i th training example
符号
m = 训练样本的数量
x's = “输入”变量/特征
y's = “输出”变量/“目标”变量
(x, y) - 一个训练样本
(x(i), yii)) - 第 i 个训练样本
Training set of housing prices
房价预测的数据集
Size in feet2(x) | Price in 1000's(y) |
2104 | 460 |
1416 | 232 |
1534 | 315 |
852 | 178 |
x(1) = 2104; x(2) = 1416; y(1) = 460
How supervised learning work?
监督学习是如何工作的
h 叫 hypothesis 是历史原因
How do we represent h?
如何表示h
[{h_ heta }left( x
ight) = { heta _0} + heta_1 {x_1}]
hθ(x) shorthand: h(x)
hθ(x) 简写 h(x)
Linear regression with one variable
一个变量的线性回归
Univariate linear regression
单变量线性回归