Multiple features (variables)
Size x1 |
Number of bedrooms x2 |
Number of floors x3 |
Age of home(year) x4 |
Price y |
2014 | 5 | 1 | 45 | 460 |
1416 | 3 | 2 | 40 | 232 |
1534 | 3 | 2 | 30 | 315 |
852 | 2 | 1 | 36 | 178 |
Notation:
n = number of features
x(i) = input (features) of ith training example.
[x_j^{left( i ight)}] value of feature j in ith training example.
符号
n = 特征的数量
x(i) = 第i个训练样本
[x_j^{left( i ight)}] 第i个样本的第j个特征
举例
x(2) = [1416
3
2
40]
[x_3^2 = 2]
线性回归中的hθ(x)不再是 [{h_ heta }left( x ight) = { heta _0} + { heta _1}x]
而是 [{h_ heta }left( x ight) = { heta _0} + { heta _1}{x_1} + { heta _2}{x_2} + ... + { heta _n}{x_n}]
为了方便起见,我们定义x0 = 1,也就是 [x_0^i = 1]
x = [x0 θ = [θ1
x1 θ2
. .
. .
xn] θn]
则 [{h_ heta }left( x ight) = { heta ^T}x]