zoukankan      html  css  js  c++  java
  • 多变量梯度下降

    Hypothesis: [{h_ heta }left( x ight) = { heta ^T}x = { heta _0} + { heta _1}{x_1} + { heta _2}{x_2} + ... + { heta _n}{x_n}]

    参数(Parameters): [{ heta _1},{ heta _2},{ heta _3},...,{ heta _n}]

    可以用Θ向量表示上面的一系列值 

    损失函数(Cost function): [Jleft( {{ heta _1},{ heta _2},{ heta _3},...,{ heta _n}} ight) = frac{1}{{2m}}sumlimits_{i = 1}^m {{{left( {{h_ heta }left( {{x^{left( i ight)}}} ight) - {y^{left( i ight)}}} ight)}^2}} ]

    当用Θ表示时,损失函数:[Jleft( Theta  ight) = frac{1}{{2m}}sumlimits_{i = 1}^m {{{left( {{h_ heta }left( {{x^{left( i ight)}}} ight) - {y^{left( i ight)}}} ight)}^2}} ]


    梯度下降算法表示为:

    重复(repeat){

    [{ heta _j}: = { heta _j} - alpha frac{partial }{{partial { heta _j}}}Jleft( {{ heta _1},{ heta _2},{ heta _3},...,{ heta _n}} ight)]  (simultaneously update for every j = 0,...,n)

    如果用Θ表示 [{ heta _j}: = { heta _j} - alpha frac{partial }{{partial { heta _j}}}Jleft( Theta  ight)] (对于 j = 0,...,n,同时更新)

    }


    现在看以下部分怎么算 [frac{partial }{{partial { heta _j}}}Jleft( {{ heta _1},{ heta _2},{ heta _3},...,{ heta _n}} ight)] 

    当n=1时

    算法为:

    repeat {

    [{ heta _0}: = { heta _0} - alpha underbrace {frac{1}{m}sumlimits_{i = 1}^m {left( {{h_ heta }left( {{x^{left( i ight)}}} ight) - {y^{left( i ight)}}} ight)} }_{frac{partial }{{partial { heta _0}}}Jleft( heta  ight)}]

    [{ heta _1}: = { heta _1} - alpha frac{1}{m}sumlimits_{i = 1}^m {left( {{h_ heta }left( {{x^{left( i ight)}}} ight) - {y^{left( i ight)}}} ight)} {x^{left( i ight)}}]

    (simultaneously update θ0, θ1)

    }

    当n>=1时

    算法为:

    repeat {

    [{ heta _j}: = { heta _j} - alpha frac{1}{m}sumlimits_{i = 1}^m {left( {{h_ heta }left( {{x^{left( i ight)}}} ight) - {y^{left( i ight)}}} ight)} x_j^{left( i ight)}]

    (simultaneously update θj for j = 0,..., n)

    }

  • 相关阅读:
    如何添加“写字板”打开方式
    UML类图聚集与组合的区别
    系统调用跟驱动程序中相应函数的参数对应关系
    PHP 判断数据类型
    PHP连接MySQL数据库的三种方式(mysql、mysqli、pdo)
    java 中的内部类总结
    cross-env使用笔记
    MySQL——约束(constraint)详解
    MySQL数据库--外键约束及外键使用
    Java中Lambda表达式的使用
  • 原文地址:https://www.cnblogs.com/qkloveslife/p/9833010.html
Copyright © 2011-2022 走看看