zoukankan      html  css  js  c++  java
  • 学习曲线

    学习曲线

    “训练误差”和“交叉验证误差”如下

    [egin{array}{l}
    {J_{train}}left( heta ight) = frac{1}{{2{m_{train}}}}sumlimits_{i = 1}^{{m_{train}}} {{{left( {{h_ heta }left( {{x^{left( i ight)}}} ight) - {y^{left( i ight)}}} ight)}^2}} \
    {J_{CV}}left( heta ight) = frac{1}{{2{m_{CV}}}}sumlimits_{i = 1}^{{m_{CV}}} {{{left( {{h_ heta }left( {x_{CV}^{left( i ight)}} ight) - y_{CV}^{left( i ight)}} ight)}^2}}
    end{array}]

    对于

    [{h_ heta }left( x ight) = { heta _0} + { heta _1}x + { heta _2}{x^2}]

    当训练样本从1增加到6时,会出现和下图类似的情况

    这样,随着训练样本的增加,“训练误差”和“交叉验证你误差”的变化如下图


    对于“High bias”情况

    [{h_ heta }left( x ight) = { heta _0} + { heta _1}x]

    随着训练样本的增加,“训练误差”和“交叉验证你误差”的变化如下图

    可以看到,两者都很大。因此,如果是“High bias”的情况,增加训练样本作用不大。


    对于“High variance”情况

    [{h_ heta }left( x ight) = { heta _0} + { heta _1}x + ... + { heta _{100}}{x^{100}}]

    随着样本数量的增加,“训练误差”和“交叉验证你误差”的变化如下图

    由于是“High variance”情况,刚开始模型对少量训练样本的适应度高,“训练误差”较小,“交叉验证误差”较大。随着训练样本的增加,两个误差之间存在明显的“gap”,如果继续加大样本,“交叉验证误差”可能会逐渐降低。因此,对于“High variance”情况,增加训练样本可能会有帮助。

  • 相关阅读:
    [PoC]某B2B网站的一个反射型XSS漏洞
    Python中的基本语句
    视频: 千重浪Linux系统调试技术培训 03-01_Basic-CPU-Register
    POJ 2955 Brackets (区间dp 括号匹配)
    LeetCode 146 LRU Cache
    Poj1734题解
    Python
    小胖说事29-----iOS中Navigation中左滑pop页面的三种方法
    深入理解javascript之原型
    android 弹幕评论效果
  • 原文地址:https://www.cnblogs.com/qkloveslife/p/9887115.html
Copyright © 2011-2022 走看看