zoukankan      html  css  js  c++  java
  • BZOJ-3509 母函数+分块+暴力+FFT

    题目描述

    给定一个长度为N的数组A[],求有多少对i, j, k(1<=i<j<k<=N)满足A[k]-A[j]=A[j]-A[i]。


    输入格式

    第一行一个整数N(N<=10^5)。
    接下来一行N个数A[i](A[i]<=30000)。


    输出格式

    一行一个整数。


    样例输入

    10
    3 5 3 6 3 4 10 4 5 2
    

    样例输出

    9

    这题网上题解很多
    我的第一个想法是枚举 j 然后左边的数 和 右边的数 FFT处理一下
    这样的复杂度是 n^2*log(n) 复杂度明显不行 所以需要进一步的优化
    网上题解都是用分块进行优化
    先在每一个块里面找一下是否存在满足条件的
    然后再找块外面的满足条件的
    这题BZOJ 开了40S 跑的了的
    我FFT是直接套板子 当作黑盒使用 所有代码有点鬼畜

    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <cmath>
    #include <algorithm>
    #include <set>
    #include <iostream>
    #include <map>
    #include <stack>
    #include <string>
    #include <vector>
    #define  pi acos(-1.0)
    #define  eps 1e-9
    #define  fi first
    #define  se second
    #define  rtl   rt<<1
    #define  rtr   rt<<1|1
    #define  bug         printf("******
    ")
    #define  mem(a,b)    memset(a,b,sizeof(a))
    #define  name2str(x) #x
    #define  fuck(x)     cout<<#x" = "<<x<<endl
    #define  f(a)        a*a
    #define  sf(n)       scanf("%d", &n)
    #define  sff(a,b)    scanf("%d %d", &a, &b)
    #define  sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
    #define  sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
    #define  pf          printf
    #define  FRE(i,a,b)  for(i = a; i <= b; i++)
    #define  FREE(i,a,b) for(i = a; i >= b; i--)
    #define  FRL(i,a,b)  for(i = a; i < b; i++)+
    #define  FRLL(i,a,b) for(i = a; i > b; i--)
    #define  FIN         freopen("data.txt","r",stdin)
    #define  gcd(a,b)    __gcd(a,b)
    #define  lowbit(x)   x&-x
    #define rep(i,a,b) for(int i=a;i<b;++i)
    #define per(i,a,b) for(int i=a-1;i>=b;--i)
    using namespace std;
    typedef long long  LL;
    typedef unsigned long long ULL;
    const int maxn = 3e5 + 7;
    const int maxm = maxn * 4;
    int n, m, a[maxn], b[maxn];
    int len, res[maxm], mx; //开大4倍
    struct cpx {
        long double r, i;
        cpx ( long double r = 0, long double i = 0 ) : r ( r ), i ( i ) {};
        cpx operator+ ( const cpx &b ) {
            return cpx ( r + b.r, i + b.i );
        }
        cpx operator- ( const cpx &b ) {
            return cpx ( r - b.r, i - b.i );
        }
        cpx operator* ( const cpx &b ) {
            return cpx ( r * b.r - i * b.i, i * b.r + r * b.i );
        }
    } va[maxm], vb[maxm];
    void rader ( cpx F[], int len ) { //len = 2^M,reverse F[i] with  F[j] j为i二进制反转
        int j = len >> 1;
        for ( int i = 1; i < len - 1; ++i ) {
            if ( i < j ) swap ( F[i], F[j] ); // reverse
            int k = len >> 1;
            while ( j >= k ) j -= k, k >>= 1;
            if ( j < k ) j += k;
        }
    }
    void FFT ( cpx F[], int len, int t ) {
        rader ( F, len );
        for ( int h = 2; h <= len; h <<= 1 ) {
            cpx wn ( cos ( -t * 2 * pi / h ), sin ( -t * 2 * pi / h ) );
            for ( int j = 0; j < len; j += h ) {
                cpx E ( 1, 0 ); //旋转因子
                for ( int k = j; k < j + h / 2; ++k ) {
                    cpx u = F[k];
                    cpx v = E * F[k + h / 2];
                    F[k] = u + v;
                    F[k + h / 2] = u - v;
                    E = E * wn;
                }
            }
        }
        if ( t == -1 ) //IDFT
            for ( int i = 0; i < len; ++i ) F[i].r /= len;
    }
    void Conv ( cpx a[], cpx b[], int len ) { //求卷积
        FFT ( a, len, 1 );
        FFT ( b, len, 1 );
        for ( int i = 0; i < len; ++i ) a[i] = a[i] * b[i];
        FFT ( a, len, -1 );
    }
    void gao () {
        len = 1;
        mx = n + m;
        while ( len <= mx ) len <<= 1; //mx为卷积后最大下标
        for ( int i = 0; i < len; i++ ) va[i].r = va[i].i = vb[i].r = vb[i].i = 0;
        for ( int i = 0; i < n; i++ ) va[i].r = a[i]; //根据题目要求改写
        for ( int i = 0; i < m; i++ ) vb[i].r = b[i]; //根据题目要求改写
        Conv ( va, vb, len );
        for ( int i = 0; i < len; ++i ) res[i] += ( LL ) floor ( va[i].r + 0.5 );
    }
    int L[maxn], R[maxn], p[maxn];
    int main() {
        //FIN;
        int num;
        sf ( num );
        m = -1;
        for ( int i = 0; i < num ; i++ ) {
            sf ( p[i] );
            R[p[i]]++;
            m = max ( m, p[i] );
        }
        m++;
        n = m;
        int sz = min ( num, 8 * ( int ) sqrt ( num ) );
        LL ans = 0;
        for ( int i = 0 ; i < num ; i += sz ) {
            int r = min ( num, i + sz ) - 1;
            for ( int j = i ; j <= r ; j++ ) R[p[j]]--;
            for ( int j = i, x ; j <= r ; j++ ) {
                for ( int k = j + 1 ; k <= r ; k++ ) {
                    x = 2 * p[j] - p[k];
                    if ( x >= 0 ) ans += 1LL * L[x];
                    x = 2 * p[k] - p[j];
                    if ( x >= 0 ) ans += 1LL * R[x];
                }
                L[p[j]]++;
            }
        }
        for ( int i = 0 ; i < num ; i += sz ) {
            int r = min ( num, i + sz ) - 1;
            mem ( a, 0 ), mem ( b, 0 ), mem ( res, 0 );
            for ( int j = 0 ; j < i ; j++ ) a[p[j]]++;
            for ( int j = r + 1 ; j < num ; j++ ) b[p[j]]++;
            gao();
            for ( int j = i ; j <= r ; j++ ) ans += 1LL * ( res[2 * p[j]] );
        }
        printf ( "%lld
    ", ans );
        return 0;
    }



  • 相关阅读:
    react-native 安卓支持 gif动态图
    react-navigation,StackNavigator,TabNavigator 导航使用
    poj3694 网络(板子题)
    POJ1275 Cashier Employment 差分约束(优化 二分)
    Codeforces Round #667 (Div. 3)
    POJ1201 Intervals 差分约束(贪心也可)
    YY的GCD
    Codeforces Round #666 (Div. 2) A~E
    Rendezvous
    创世纪
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/10434224.html
Copyright © 2011-2022 走看看