zoukankan      html  css  js  c++  java
  • Exponial~(欧拉函数)~(发呆题)

    Description

    Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructing really big numbers known to humankind, for instance:

    • Exponentiation: 422016=4242...42����������������2016 times422016=42⋅42⋅...⋅42⏟2016 times.
    • Factorials: 2016!=2016 ⋅ 2015 ⋅ ... ⋅ 2 ⋅ 1.

    Illustration of exponial(3) (not to scale), Picture by C.M. de Talleyrand-Périgord via Wikimedia Commons

    In this problem we look at their lesser-known love-child the exponial, which is an operation defined for all positive integers n​ as 
    exponial(n)=n(n − 1)(n − 2)⋯21
    For example, exponial(1)=1 and exponial(5)=54321 ≈ 6.206 ⋅ 10183230 which is already pretty big. Note that exponentiation is right-associative: abc = a(bc).

    Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computesexponial(n) mod m (the remainder of exponial(n) when dividing by m).

    Input

    There will be several test cases. For the each case, the input consists of two integers n (1 ≤ n ≤ 109) and m (1 ≤ m ≤ 109).

    Output

    Output a single integer, the value of exponial(n) mod m.

    Sample Input

    2 42
    5 123456789
    94 265

    Sample Output

    2
    16317634
    39

    Hint

    Source

    NCPC 2016

    这题题意很容易懂  但是数学不好,只能看看。

    在没做这题之前我都不知道有欧拉函数这个东西

    AB mod C=AB mod φ(C)+φ(C) mod C(B>φ(C))

    φ(C)表示小于等于C和C互质的数目。

    此处只是提供一个模板,等我对欧拉函数了解后,

    我会写一篇详细的关于欧拉函数的详解。

     1 #include<iostream>
     2 #include<algorithm>
     3 #include<cstdio>
     4 #include<cmath>
     5 #include<cstring>
     6 #include<queue>
     7 using namespace std;
     8 const int maxn =1e5+10;
     9 typedef long long ll;
    10 ll n,m,ans;
    11 ll  euler(ll n)
    12 {
    13     ll res=n,a=n;
    14     for (ll i=2 ;i*i <=a ;i++  ){
    15         if (a%i==0) {
    16             res=res/i*(i-1);
    17             while(a%i==0) a/=i;
    18         }
    19     }
    20     if (a>1) res=res/a*(a-1);
    21     return res;
    22 }
    23 ll modexp(ll a,ll b,ll c)
    24 {
    25     ll res=1;
    26     while(b){
    27         if (b&1) res=res*a%c;
    28         a=a*a%c;
    29         b=b>>1;
    30     }
    31     return res;
    32 }
    33 ll getans(ll n,ll m )
    34 {
    35     if (m==1) return 0;
    36     if (n==1) return 1;
    37     else if (n==2) return 2%m;
    38     else if (n==3) return 9%m;
    39     else if (n==4) return modexp(4,9,m);
    40     else {
    41         ll phi=euler(m);
    42         ll z=getans(n-1,phi);
    43         ans=modexp(n,phi+z,m);
    44     }
    45     return ans;
    46 }
    47 int main() {
    48     while(scanf("%lld%lld",&n,&m)!=EOF){
    49         printf("%lld
    ",getans(n,m));
    50     }
    51     return 0;
    52 }
  • 相关阅读:
    20145231第九周学习笔记
    20145231第八周学习笔记
    20145231《Java程序设计》第三次实验报告
    20145231第七周学习笔记
    20145231《Java程序设计》第二次实验报告
    测试「20200912测试总结」
    题解「Luogu4774 [NOI2018]屠龙勇士」
    总结「斯坦纳树」
    题解「AT1226 電圧」
    题解「AT1983 [AGC001E] BBQ Hard」
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/8727707.html
Copyright © 2011-2022 走看看