zoukankan      html  css  js  c++  java
  • Drainage Ditches~网络流模板

    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10
    

    Sample Output

    50

      1 #include<stdio.h>
      2 #include<string>
      3 #include<string.h>
      4 #include<vector>
      5 #include<queue>
      6 using namespace std;
      7 const int maxn = 1e5 + 10;
      8 const int INF = 999999999;
      9 struct node {
     10     int from, to, cap, flow;
     11 };
     12 struct Dinic {
     13     int n, m, s, t;
     14     vector<node>nodes;
     15     vector<int>g[maxn];
     16     int vis[maxn];
     17     int d[maxn];
     18     int cur[maxn];
     19     void clearall(int n) {
     20         for (int i = 0 ; i < n ; i++) g[i].clear();
     21         nodes.clear();
     22     }
     23     void clearflow() {
     24         int len = nodes.size();
     25         for (int i = 0 ; i < len ; i++) nodes[i].flow = 0;
     26     }
     27     void add(int from, int to, int cap) {
     28         nodes.push_back((node) {
     29             from, to, cap, 0
     30         });
     31         nodes.push_back((node) {
     32             to, from, 0, 0
     33         });
     34         m = nodes.size();
     35         g[from].push_back(m - 2);
     36         g[to].push_back(m - 1);
     37     }
     38     bool bfs() {
     39         memset(vis, 0, sizeof(vis));
     40         queue<int>q;
     41         q.push(s);
     42         d[s] = 0;
     43         vis[s] = 1;
     44         while(!q.empty()) {
     45             int x = q.front();
     46             q.pop();
     47             int len = g[x].size();
     48             for (int i = 0 ; i < len ; i++) {
     49                 node &e = nodes[g[x][i]];
     50                 if (!vis[e.to] && e.cap > e.flow ) {
     51                     vis[e.to] = 1;
     52                     d[e.to] = d[x] + 1;
     53                     q.push(e.to);
     54                 }
     55             }
     56         }
     57         return vis[t];
     58     }
     59     int dfs(int x, int a) {
     60         if  (x == t || a == 0) return a;
     61         int flow = 0, f, len = g[x].size();
     62         for (int &i = cur[x] ; i < len ; i++) {
     63             node & e = nodes[g[x][i]];
     64             if (d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0 ) {
     65                 e.flow += f;
     66                 nodes[g[x][i] ^ 1].flow -= f;
     67                 flow += f;
     68                 a -= f;
     69                 if (a == 0) break;
     70             }
     71         }
     72         return flow;
     73     }
     74     int maxflow(int a, int b) {
     75         s = a;
     76         t = b;
     77         int flow = 0;
     78         while(bfs()) {
     79             memset(cur, 0, sizeof(cur));
     80             flow += dfs(s, INF);
     81         }
     82         return flow;
     83     }
     84     vector<int>mincut() {
     85         vector<int>ans;
     86         int len = nodes.size();
     87         for (int i = 0 ; i < len ; i++) {
     88             node & e = nodes[i];
     89             if ( vis[e.from] && !vis[e.to] && e.cap > 0 ) ans.push_back(i);
     90         }
     91         return ans;
     92     }
     93     void reduce() {
     94         int len = nodes.size();
     95         for (int i = 0 ; i < len ; i++) nodes[i].cap -= nodes[i].flow;
     96     }
     97 } f;
     98 int main() {
     99     int n, m;
    100     while(~scanf("%d%d", &m, &n)) {
    101         f.clearall(n);
    102         f.clearflow();
    103         for (int i = 0 ; i < m ; i++) {
    104             int u, v, c;
    105             scanf("%d%d%d", &u, &v, &c);
    106             f.add(u, v, c);
    107         }
    108         printf("%d
    ", f.maxflow(1, n));
    109     }
    110     return 0;
    111 }
  • 相关阅读:
    Windows自带Android模拟器启动失败
    Xamarin.Android提示找不到mono.Android.Support.v4
    Xamarin提示Build-tools版本过老
    Xamarin Android布局文件没有智能提示
    Xamarin.iOS模拟器调试找不到资源文件
    彻底卸载 RAD Studio 2009/2010/XE+ 的步骤
    Delphi版本号对照
    RAD Studio 2010 环境设置(转)
    C语言写的俄罗斯方块
    字符编解码的故事–ASCII,ANSI,Unicode,Utf-8区别
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/8870369.html
Copyright © 2011-2022 走看看