zoukankan      html  css  js  c++  java
  • Codeforces Round #483 (Div. 2) D. XOR-pyramid

    D. XOR-pyramid
    time limit per test
    2 seconds
    memory limit per test
    512 megabytes
    input
    standard input
    output
    standard output

    For an array bb of length mm we define the function ff as

    f(b)={b[1]if m=1f(b[1]b[2],b[2]b[3],,b[m1]b[m])otherwise,f(b)={b[1]if m=1f(b[1]⊕b[2],b[2]⊕b[3],…,b[m−1]⊕b[m])otherwise,

    where ⊕ is bitwise exclusive OR.

    For example, f(1,2,4,8)=f(12,24,48)=f(3,6,12)=f(36,612)=f(5,10)=f(510)=f(15)=15f(1,2,4,8)=f(1⊕2,2⊕4,4⊕8)=f(3,6,12)=f(3⊕6,6⊕12)=f(5,10)=f(5⊕10)=f(15)=15

    You are given an array aa and a few queries. Each query is represented as two integers ll and rr. The answer is the maximum value of ffon all continuous subsegments of the array al,al+1,,aral,al+1,…,ar.

    Input

    The first line contains a single integer nn (1n50001≤n≤5000) — the length of aa.

    The second line contains nn integers a1,a2,,ana1,a2,…,an (0ai23010≤ai≤230−1) — the elements of the array.

    The third line contains a single integer qq (1q1000001≤q≤100000) — the number of queries.

    Each of the next qq lines contains a query represented as two integers ll, rr (1lrn1≤l≤r≤n).

    Output

    Print qq lines — the answers for the queries.

    Examples
    input
    Copy
    3
    8 4 1
    2
    2 3
    1 2
    output
    Copy
    5
    12
    input
    Copy
    6
    1 2 4 8 16 32
    4
    1 6
    2 5
    3 4
    1 2
    output
    Copy
    60
    30
    12
    3
    Note

    In first sample in both queries the maximum value of the function is reached on the subsegment that is equal to the whole segment.

    In second sample, optimal segment for first query are [3,6][3,6], for second query — [2,5][2,5], for third — [3,4][3,4], for fourth — [1,2][1,2].

     这题就是在异或操作下的区间最大值。

     n《=5000 可以用区间DP做。

      dp[i][j] 表示长度为i 起始点是j 的区间最大值。

      

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 
     4 typedef long long LL ;
     5 const int maxn = 5e3 + 7;
     6 int dp[maxn][maxn];
     7 
     8 int main() {
     9     int n;
    10     scanf("%d", &n );
    11     for (int i = 1 ; i <= n ; i++)
    12         scanf("%d", &dp[1][i]);
    13     for (int i = 2 ; i <= n ; i++ )
    14         for (int j = 1 ; j <= n - i + 1 ; j++)
    15             dp[i][j] = dp[i - 1][j] ^ dp[i - 1][j + 1];
    16     for (int i = 2 ; i <= n ; i++)
    17         for (int j = 1 ; j <= n - i + 1 ; j++)
    18             dp[i][j] = max(dp[i][j], max(dp[i - 1][j], dp[i - 1][j + 1]));
    19     int q;
    20     scanf("%d", &q);
    21     while(q--) {
    22         int x, y;
    23         scanf("%d%d", &x, &y);
    24         int len = y - x + 1;
    25         printf("%d
    ", dp[len][x]);
    26     }
    27     return 0;
    28 }
  • 相关阅读:
    第四周编程总结
    第三周作业编程总结
    第二周基础作业
    【C++学习教程03】面向对象编程的基本知识&内联函数
    【C++学习教程02】运算符
    【C++学习教程01】C++命名空间重名&函数原型&字符类型&数据类型
    为什么匿名内部类只能访问其所在方法中的final变量
    android通过socket上传文件
    android socket编程
    test markdown-here chrome 插件
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/9049908.html
Copyright © 2011-2022 走看看