zoukankan      html  css  js  c++  java
  • Codeforces Round #483 (Div. 2) D. XOR-pyramid

    D. XOR-pyramid
    time limit per test
    2 seconds
    memory limit per test
    512 megabytes
    input
    standard input
    output
    standard output

    For an array bb of length mm we define the function ff as

    f(b)={b[1]if m=1f(b[1]b[2],b[2]b[3],,b[m1]b[m])otherwise,f(b)={b[1]if m=1f(b[1]⊕b[2],b[2]⊕b[3],…,b[m−1]⊕b[m])otherwise,

    where ⊕ is bitwise exclusive OR.

    For example, f(1,2,4,8)=f(12,24,48)=f(3,6,12)=f(36,612)=f(5,10)=f(510)=f(15)=15f(1,2,4,8)=f(1⊕2,2⊕4,4⊕8)=f(3,6,12)=f(3⊕6,6⊕12)=f(5,10)=f(5⊕10)=f(15)=15

    You are given an array aa and a few queries. Each query is represented as two integers ll and rr. The answer is the maximum value of ffon all continuous subsegments of the array al,al+1,,aral,al+1,…,ar.

    Input

    The first line contains a single integer nn (1n50001≤n≤5000) — the length of aa.

    The second line contains nn integers a1,a2,,ana1,a2,…,an (0ai23010≤ai≤230−1) — the elements of the array.

    The third line contains a single integer qq (1q1000001≤q≤100000) — the number of queries.

    Each of the next qq lines contains a query represented as two integers ll, rr (1lrn1≤l≤r≤n).

    Output

    Print qq lines — the answers for the queries.

    Examples
    input
    Copy
    3
    8 4 1
    2
    2 3
    1 2
    output
    Copy
    5
    12
    input
    Copy
    6
    1 2 4 8 16 32
    4
    1 6
    2 5
    3 4
    1 2
    output
    Copy
    60
    30
    12
    3
    Note

    In first sample in both queries the maximum value of the function is reached on the subsegment that is equal to the whole segment.

    In second sample, optimal segment for first query are [3,6][3,6], for second query — [2,5][2,5], for third — [3,4][3,4], for fourth — [1,2][1,2].

     这题就是在异或操作下的区间最大值。

     n《=5000 可以用区间DP做。

      dp[i][j] 表示长度为i 起始点是j 的区间最大值。

      

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 
     4 typedef long long LL ;
     5 const int maxn = 5e3 + 7;
     6 int dp[maxn][maxn];
     7 
     8 int main() {
     9     int n;
    10     scanf("%d", &n );
    11     for (int i = 1 ; i <= n ; i++)
    12         scanf("%d", &dp[1][i]);
    13     for (int i = 2 ; i <= n ; i++ )
    14         for (int j = 1 ; j <= n - i + 1 ; j++)
    15             dp[i][j] = dp[i - 1][j] ^ dp[i - 1][j + 1];
    16     for (int i = 2 ; i <= n ; i++)
    17         for (int j = 1 ; j <= n - i + 1 ; j++)
    18             dp[i][j] = max(dp[i][j], max(dp[i - 1][j], dp[i - 1][j + 1]));
    19     int q;
    20     scanf("%d", &q);
    21     while(q--) {
    22         int x, y;
    23         scanf("%d%d", &x, &y);
    24         int len = y - x + 1;
    25         printf("%d
    ", dp[len][x]);
    26     }
    27     return 0;
    28 }
  • 相关阅读:
    IntelliJ IDEA maven库下载依赖包速度慢的问题
    安装 PHP
    秒杀怎么样才可以防止超卖?基于mysql的事务和锁实现
    MySQL 使用自增ID主键和UUID 作为主键的优劣比较详细过程(从百万到千万表记录测试)
    架构师之路16年精选50篇
    基于ELK和Python搭建简单的监控告警系统
    MySQL5.7 利用keepalived来实现mysql双主高可用方案的详细过程
    在线数据迁移
    jedisLock—redis分布式锁实现
    Intellij IDEA 最新旗舰版注册激活破解(2018亲测,可用)
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/9049908.html
Copyright © 2011-2022 走看看