zoukankan      html  css  js  c++  java
  • poj 2411 Mondriaan's Dream(状压dp)

    Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways. 

    Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

    Input

    The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

    Output

    For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

    Sample Input

    1 2
    1 3
    1 4
    2 2
    2 3
    2 4
    2 11
    4 11
    0 0
    

    Sample Output

    1
    0
    1
    2
    3
    5
    144
    51205

     1 #include <cstdio>
     2 #include <algorithm>
     3 #include <cstring>
     4 using namespace std;
     5 typedef long long LL;
     6 const int maxn = 1e6 + 10;
     7 const int INF = 0x7fffffff;
     8 const int mod = 100000000;
     9 int n, m, tot;
    10 LL dp[15][1 << 15];
    11 int init(int x) {
    12     for (int i = 0 ; i < tot ;) {
    13         if (x & (1 << i)) {
    14             if (i == m - 1) return 0;
    15             if (x & (1 << (i + 1))) i += 2;
    16             else return 0;
    17         } else i++;
    18     }
    19     return 1;
    20 }
    21 int check(int x, int y) {
    22     for (int i = 0 ; i < m ;) {
    23         if (x & (1 << i)) {
    24             if (y & (1 << i)) {
    25                 if (i == m - 1 || !(x & 1 << (i + 1)) || !(y & 1 << (i + 1))) return 0;
    26                 else i += 2;
    27             } else i++;
    28         } else {
    29             if (y & (1 << i)) i++;
    30             else return 0;
    31         }
    32     }
    33     return 1;
    34 }
    35 int main() {
    36     while(scanf("%d%d", &n, &m) != EOF) {
    37         if (n == 0 && m == 0  ) break;
    38         memset(dp, 0, sizeof(dp));
    39         if (n & 1 && m & 1) {
    40             printf("0
    ");
    41             continue;
    42         }
    43         if (n < m) swap(n, m);
    44         tot = 1 << m;
    45         for (int i = 0 ; i < tot ; i++)
    46             if (init(i)) dp[1][i] = 1;
    47         for (int i = 2 ; i <= n ; i++) {
    48             for (int j = 0 ; j < tot ; j++) {
    49                 for (int k = 0 ; k < tot ; k++) {
    50                     if (check(j, k)) dp[i][j] += dp[i - 1][k];
    51                 }
    52             }
    53         }
    54         printf("%lld
    ", dp[n][tot - 1]);
    55     }
    56     return 0;
    57 }
  • 相关阅读:
    DFS初级算法题练习 POJ2488 POJ3009 POJ1088
    分支限界法基础练习笔记
    PuyoPuyo DFS算法练习
    回溯法基础练习笔记
    java基础:I/O流学习笔记
    synchronized锁的各种用法及注意事项
    20.04搭建ROS2
    西安 交建交通科技 招聘信息
    在.NET2.0中使用LINQ
    sqlite+VS2010+EF
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/9345730.html
Copyright © 2011-2022 走看看