zoukankan      html  css  js  c++  java
  • poj 2411 Mondriaan's Dream(状压dp)

    Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways. 

    Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

    Input

    The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

    Output

    For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

    Sample Input

    1 2
    1 3
    1 4
    2 2
    2 3
    2 4
    2 11
    4 11
    0 0
    

    Sample Output

    1
    0
    1
    2
    3
    5
    144
    51205

     1 #include <cstdio>
     2 #include <algorithm>
     3 #include <cstring>
     4 using namespace std;
     5 typedef long long LL;
     6 const int maxn = 1e6 + 10;
     7 const int INF = 0x7fffffff;
     8 const int mod = 100000000;
     9 int n, m, tot;
    10 LL dp[15][1 << 15];
    11 int init(int x) {
    12     for (int i = 0 ; i < tot ;) {
    13         if (x & (1 << i)) {
    14             if (i == m - 1) return 0;
    15             if (x & (1 << (i + 1))) i += 2;
    16             else return 0;
    17         } else i++;
    18     }
    19     return 1;
    20 }
    21 int check(int x, int y) {
    22     for (int i = 0 ; i < m ;) {
    23         if (x & (1 << i)) {
    24             if (y & (1 << i)) {
    25                 if (i == m - 1 || !(x & 1 << (i + 1)) || !(y & 1 << (i + 1))) return 0;
    26                 else i += 2;
    27             } else i++;
    28         } else {
    29             if (y & (1 << i)) i++;
    30             else return 0;
    31         }
    32     }
    33     return 1;
    34 }
    35 int main() {
    36     while(scanf("%d%d", &n, &m) != EOF) {
    37         if (n == 0 && m == 0  ) break;
    38         memset(dp, 0, sizeof(dp));
    39         if (n & 1 && m & 1) {
    40             printf("0
    ");
    41             continue;
    42         }
    43         if (n < m) swap(n, m);
    44         tot = 1 << m;
    45         for (int i = 0 ; i < tot ; i++)
    46             if (init(i)) dp[1][i] = 1;
    47         for (int i = 2 ; i <= n ; i++) {
    48             for (int j = 0 ; j < tot ; j++) {
    49                 for (int k = 0 ; k < tot ; k++) {
    50                     if (check(j, k)) dp[i][j] += dp[i - 1][k];
    51                 }
    52             }
    53         }
    54         printf("%lld
    ", dp[n][tot - 1]);
    55     }
    56     return 0;
    57 }
  • 相关阅读:
    React-Hooks
    RC-Select 学习笔记
    React Strict Mode
    CSSMotion VS animation in Angular
    jquery中has方法
    jquery中对于extend方法的使用
    一篇对于在jquery中使用jsonp技术介绍
    对于table元素的总结
    css3布局相关样式
    移动端去掉按钮点击热区
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/9345730.html
Copyright © 2011-2022 走看看