zoukankan      html  css  js  c++  java
  • HDU 3709 Balanced Number (数位DP)

    A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. More specifically, imagine each digit as a box with weight indicated by the digit. When a pivot is placed at some digit of the number, the distance from a digit to the pivot is the offset between it and the pivot. Then the torques of left part and right part can be calculated. It is balanced if they are the same. A balanced number must be balanced with the pivot at some of its digits. For example, 4139 is a balanced number with pivot fixed at 3. The torqueses are 4*2 + 1*1 = 9 and 9*1 = 9, for left part and right part, respectively. It's your job 
    to calculate the number of balanced numbers in a given range [x, y].

    InputThe input contains multiple test cases. The first line is the total number of cases T (0 < T ≤ 30). For each case, there are two integers separated by a space in a line, x and y. (0 ≤ x ≤ y ≤ 10 18).OutputFor each case, print the number of balanced numbers in the range [x, y] in a line.Sample Input

    2
    0 9
    7604 24324

    Sample Output

    10
    897

     1 #include <stdio.h>
     2 #include <string.h>
     3 #include <algorithm>
     4 using namespace std;
     5 typedef long long LL;
     6 int bit[25];
     7 LL dp[20][20][2010], n, m;
     8 
     9 LL dfs(int pos, int d, int sum, int limit) {
    10     if (pos <= 0) return (sum == 0);
    11     if (sum < 0)  return 0;
    12     if ( !limit && dp[pos][d][sum] != -1 ) return dp[pos][d][sum];
    13     LL ans = 0;
    14     int num = limit ? bit[pos] : 9;
    15     for (int i = 0 ; i <= num ; i++)
    16         ans += dfs(pos - 1, d, sum + i * (pos - d), limit && i == num ) ;
    17     if (!limit) dp[pos][d][sum] = ans;
    18     return ans;
    19 }
    20 LL solve(LL x) {
    21     int len = 0;
    22     while(x) {
    23         bit[++len] = x % 10;
    24         x /= 10;
    25     }
    26     LL ret = 0;
    27     for (int i = 1 ; i <= len ; i++)
    28         ret += dfs(len, i, 0, 1);
    29     return ret - len + 1;
    30 }
    31 int main() {
    32     int t;
    33     scanf("%d", &t);
    34     memset(dp, -1, sizeof(dp));
    35     while(t--) {
    36         scanf("%lld%lld", &n, &m);
    37         printf("%lld
    ", solve(m) - solve(n - 1));
    38     }
    39     return 0;
    40 }
  • 相关阅读:
    什么是桌面虚拟化,实施桌面虚拟化有什么好处?[转]
    运维工程师的职责和前景
    informix 中chunk/dbspace概念
    让用户体验决定桌面虚拟化成败
    专访运维与人才外包专家黄琨:运维工作最大的挑战是什么?
    PD与DBMS中的数据类型
    informix长事务的处理方式
    Oracle expdp/impdp导出导入命令及数据库备份(转)
    wpf的treeview显示item时候不能stretch的一个解决办法
    Jenkins 用户权限管理
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/9345752.html
Copyright © 2011-2022 走看看