You're given a permutation aaa of length nnn (1≤n≤1051 le n le 10^51≤n≤105).
For each i∈[1,n]i in [1,n]i∈[1,n], construct a sequence sis_isi by the following rules:
- si[1]=is_i[1]=isi[1]=i;
- The length of sis_isi is nnn, and for each j∈[2,n]j in [2, n]j∈[2,n], si[j]≤si[j−1]s_i[j] le s_i[j-1]si[j]≤si[j−1];
- First, we must choose all the possible elements of sis_isi from permutation aaa. If the index of si[j]s_i[j]si[j] in permutation aaa is pos[j]pos[j]pos[j], for each j≥2j ge 2j≥2, ∣pos[j]−pos[j−1]∣≤k|pos[j]-pos[j-1]|le k∣pos[j]−pos[j−1]∣≤k (1≤k≤1051 le k le 10^51≤k≤105). And for each sis_isi, every element of sis_isi must occur in aaa at most once.
- After we choose all possible elements for sis_isi, if the length of sis_isi is smaller than nnn, the value of every undetermined element of sis_isi is 000;
- For each sis_isi, we must make its weight high enough.
Consider two sequences C=[c1,c2,...cn]C = [c_1, c_2, ... c_n]C=[c1,c2,...cn] and D=[d1,d2,...,dn]D=[d_1, d_2, ..., d_n]D=[d1,d2,...,dn], we say the weight of CCC is higher than that of DDD if and only if there exists an integer kkk such that 1≤k≤n1 le k le n1≤k≤n, ci=dic_i=d_ici=di for all 1≤i<k1 le i < k1≤i<k, and ck>dkc_k > d_kck>dk.
If for each i∈[1,n]i in [1,n]i∈[1,n], ci=dic_i=d_ici=di, the weight of CCC is equal to the weight of DDD.
For each i∈[1,n]i in [1,n]i∈[1,n], print the number of non-zero elements of sis_isi separated by a space.
It's guaranteed that there is only one possible answer.
Input
There are multiple test cases.
The first line contains one integer T(1≤T≤20)T(1 le T le 20)T(1≤T≤20), denoting the number of test cases.
Each test case contains two lines, the first line contains two integers nnn and kkk (1≤n,k≤1051 le n,k le 10^51≤n,k≤105), the second line contains nnn distinct integers a1,a2,...,ana_1, a_2, ..., a_na1,a2,...,an (1≤ai≤n1 le a_i le n1≤ai≤n) separated by a space, which is the permutation aaa.
Output
For each test case, print one line consists of nnn integers ∣s1∣,∣s2∣,...,∣sn∣|s_1|, |s_2|, ..., |s_n|∣s1∣,∣s2∣,...,∣sn∣ separated by a space.
∣si∣|s_i|∣si∣ is the number of non-zero elements of sequence sis_isi.
There is no space at the end of the line.
样例输入
2 3 1 3 2 1 7 2 3 1 4 6 2 5 7
样例输出
1 2 3 1 1 2 3 2 3 3
解题思路: 题目意思找[x-k,x+k]区间里小于其的最大值,然后在用那个数去更新 位置一个单调递减的数列!
1 #include <bits/stdc++.h> 2 using namespace std; 3 int tot=0,t,n,k; 4 const int maxn=1e5+5; 5 struct Node{ 6 int l,r,sum; 7 }A[maxn*32]; 8 int arr[maxn],root[maxn]; 9 int ma[maxn],res[maxn]; 10 11 void updata(int left,int right,int &now,int pre,int value){ 12 A[++tot]=A[pre],now=tot,A[now].sum++; 13 if(left==right) return; 14 int mid=left+right>>1; 15 if(mid>=value) updata(left,mid,A[now].l,A[pre].l,value); 16 else updata(mid+1,right,A[now].r,A[pre].r,value); 17 } 18 19 int query(int left,int right,int x,int y,int value){ //返回的小于某个数的最大值 20 if(A[y].sum-A[x].sum==0) return -1; //当前区间的个数为0则减枝; 21 if(left==right){ //递归到叶子节点 22 return left<value?left:-1; 23 } 24 int mid=left+right>>1; 25 if(value<=mid+1||A[A[y].r].sum-A[A[x].r].sum==0){ //查找的数在左边或者右边没有shu 26 return query(left,mid,A[x].l,A[y].l,value); 27 } 28 int t=query(mid+1,right,A[x].r,A[y].r,value); //先查找右边 29 if(t==-1) query(left,mid,A[x].l,A[y].l,value); 30 else return t; 31 32 } 33 34 int main(){ 35 ios::sync_with_stdio(false); 36 cin>>t; 37 while(t--){ 38 memset(root,0,sizeof(root)),tot=0,memset(A,0,sizeof(A)); 39 cin>>n>>k; 40 for(int i=1;i<=n;i++) cin>>arr[i],ma[arr[i]]=i; 41 for(int i=1;i<=n;i++) updata(1,n,root[i],root[i-1],arr[i]); 42 res[1]=1; 43 for(int i=2;i<=n;i++){ 44 int L=max(1,ma[i]-k); 45 int R=min(n,ma[i]+k); 46 int flag=query(1,n,root[L-1],root[R],i); 47 if(flag==-1) res[i]=1; 48 else res[i]=res[flag]+1; //递推的公式 49 } 50 for(int i=1;i<=n;i++){ 51 printf("%d%c",res[i],i==n?' ':' '); 52 } 53 } 54 return 0; 55 }
1 #include <bits/stdc++.h> 2 using namespace std; 3 int t,n,m; 4 const int maxn=1e5+5; 5 int sum[maxn<<2]; 6 int ma[maxn],res[maxn],arr[maxn]; 7 void updata(int rt) { sum[rt]=max(sum[rt<<1],sum[rt<<1|1]); } //区间存的是最大值 8 void build(int l,int r,int rt){ 9 sum[rt]=0; 10 if(l==r) {return;} 11 int mid=l+r>>1; 12 build(l,mid,rt<<1); 13 build(mid+1,r,rt<<1|1); 14 updata(rt); 15 } 16 void add(int l,int r,int rt,int pos,int value){ 17 if(l==r) {sum[rt]=value;return;} 18 int mid=l+r>>1; 19 if(mid>=pos) add(l,mid,rt<<1,pos,value); 20 else add(mid+1,r,rt<<1|1,pos,value); 21 updata(rt); 22 } 23 int query(int l,int r,int rt,int L,int R,int value){ 24 if(L<=l&&R>=r) return sum[rt]; 25 int mid=l+r>>1; 26 int ans=0; 27 if(mid>=L) ans=max(ans,query(l,mid,rt<<1,L,R,value)); 28 if(R>mid) ans=max(ans,query(mid+1,r,rt<<1|1,L,R,value)); 29 return ans; 30 } 31 32 int main(){ 33 ios::sync_with_stdio(false); 34 cin>>t; 35 while(t--){ 36 cin>>n>>m; 37 for(int i=1;i<=n;i++){ 38 cin>>arr[i]; 39 ma[arr[i]]=i; 40 } 41 build(1,n,1); 42 for(int i=1;i<=n;i++){ 43 int L=max(1,ma[i]-m); 44 int R=min(n,ma[i]+m); 45 int x=query(1,n,1,L,R,i); //小于这个数的最大值 46 add(1,n,1,ma[i],i); //后添加必定保证是小于其的数 47 res[i]=res[x]+1; 48 } 49 for(int i=1;i<=n;i++) 50 printf("%d%c",res[i],i==n?' ':' '); 51 } 52 return 0; 53 }