zoukankan      html  css  js  c++  java
  • Fibonacci Tree(最小最大生成树)

    Fibonacci Tree

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 7969    Accepted Submission(s): 2409


    Problem Description
      Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
      Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
    (Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
     
    Input
      The first line of the input contains an integer T, the number of test cases.
      For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
      Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
     
    Output
      For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
     
    Sample Input
    2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
     
    Sample Output
    Case #1: Yes Case #2: No
     
    解题思路: 白边最小生成树值low  最大生成树high   中间的值生成树必定存在;
     
     1 #include <iostream>
     2 #include <cstring>
     3 #include <cstdio>
     4 #include <algorithm>
     5 
     6 using namespace std;
     7 int t,n,m,cnt;
     8 const int N=1e5+5;
     9 int arr[N];
    10 int brr[N];
    11 
    12 struct Node{
    13     int u,v,ee;
    14 }A[N];
    15 
    16 int judge(){
    17     brr[1]=1,brr[2]=2;
    18     for(int i=3;i<=31;i++){
    19         brr[i]=brr[i-1]+brr[i-2];
    20     }
    21 }
    22 
    23 int cmp1(Node a,Node b){ return a.ee<b.ee; }
    24 int cmp2(Node a,Node b){ return a.ee>b.ee; }
    25 
    26 int find_root(int x){ return arr[x]==x?x:arr[x]=find_root(arr[x]); }
    27 void merge_unit(int x,int y){
    28     int xx=find_root(x);
    29     int yy=find_root(y);
    30     if(xx!=yy) arr[xx]=yy;
    31 }
    32 int kurscul(){
    33     cnt=0;
    34     int num=0;
    35     for(int i=1;i<=N-1;i++) arr[i]=i;
    36     for(int i=1;i<=m;i++){
    37         if(find_root(A[i].u)!=find_root(A[i].v)){
    38             cnt++;
    39             merge_unit(A[i].u,A[i].v);
    40             num+=A[i].ee;
    41         }
    42     }
    43     return num;
    44 }
    45 
    46 int main(){
    47     ios::sync_with_stdio(false);
    48     judge();
    49     int jishu=0;
    50     cin>>t;
    51     while(t--){
    52         cin>>n>>m;
    53         for(int i=1,d1,d2,d3;i<=m;i++){
    54             cin>>d1>>d2>>d3;
    55             A[i]={d1,d2,d3};
    56         }
    57         sort(A+1,A+1+m,cmp1);
    58         int low=kurscul();
    59         cout << "Case #" << ++jishu << ": ";
    60         if(cnt!=n-1) {cout << "No" << endl;continue;}
    61         sort(A+1,A+1+m,cmp2);
    62         int high=kurscul();
    63         int rr=1;
    64         while(brr[rr]<low) rr++;   //
    65         if(brr[rr]<=high) cout << "Yes" << endl;
    66         else cout << "No" << endl;
    67     }
    68     return 0;
    69 }
    View Code
  • 相关阅读:
    线程的终止pthread_exit和返回为什么终止的原因
    临界区互斥使用之使用自旋锁
    临界区的同步操作-------------使用信号量 实现
    常用解压操作
    group compare vs pair compare
    两个总体的参数关系
    纳伪|去真
    Ho|H1|p-value|p值与U值|单侧检验
    统计分布近似转化
    样本均值的标准误差|样本均值的标准差|总体标准差|样本标准差|简单随机抽样|样本均值估计|样本方差估计|
  • 原文地址:https://www.cnblogs.com/qq-1585047819/p/11687783.html
Copyright © 2011-2022 走看看