1 /* 2 快速幂模版 3 求x^t%mod 4 时间复杂度:O(logn) 5 注:递归可能爆栈 6 原理:x^t = (x^(t/2))^2 + x^(n%2); 7 */ 8 #include <iostream> 9 using namespace std; 10 long long quick_pow(long long x, long long t, long long mod) 11 { 12 if(t == 0) return 1; 13 long long temp = quick_pow(x, t / 2, mod); 14 temp = temp * temp % mod; 15 if(t % 2 == 1) temp = temp * x % mod; 16 return temp; 17 } 18 long long quick_pow2(long long x, long long t, long long mod) 19 { 20 long long ret = 1; 21 while(t) 22 { 23 if(t % 2)ret = ret * x % mod; 24 x = x * x % mod; 25 t >>= 1; 26 } 27 return ret; 28 } 29 int main() 30 { 31 long long x, t, mod; 32 cin >> x >> t >> mod; 33 cout << quick_pow(x, t, mod) << endl; 34 cout << quick_pow2(x, t, mod) << endl; 35 return 0; 36 }