zoukankan      html  css  js  c++  java
  • OpenCV开发笔记(六十九):红胖子8分钟带你使用传统方法识别已知物体(图文并茂+浅显易懂+程序源码)

     

    前言

      红胖子,来也!
      特征点、匹配,那么如何使用特征点和匹配来识别已有的物体,也就剩最关键的最后一步:寻找已知的物体了。

     

    Demo

      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述

     

    寻找已知物体

    本篇章使用sift/surf特征点

    sift特征点

      尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。

    surf特征点

      SURF算法采用了很多方法来对每一步进行优化从而提高速度。分析显示在结果效果相当的情况下SURF的速度是SIFT的3倍。SURF善于处理具有模糊和旋转的图像,但是不善于处理视角变化和光照变化。(SIFT特征是局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性)。
      针对图像场景的特点,选择不同的特征点,列出之前特征点相关的博文:
      《OpenCV开发笔记(六十三):红胖子8分钟带你深入了解SIFT特征点(图文并茂+浅显易懂+程序源码)
      《OpenCV开发笔记(六十四):红胖子8分钟带你深入了解SURF特征点(图文并茂+浅显易懂+程序源码)
      《OpenCV开发笔记(六十五):红胖子8分钟带你深入了解ORB特征点(图文并茂+浅显易懂+程序源码)

    本篇章使用暴力、最邻近差值匹配

    暴力匹配

      最佳特征匹配总是尝试所有可能的匹配,从而使得它总能够找到最佳匹配,这也是BruteForce(暴力法)的原始含义,涉及到的类为BFMatcher类。
      《OpenCV开发笔记(六十七):红胖子8分钟带你深入了解特征点暴力匹配(图文并茂+浅显易懂+程序源码)

    最近邻差值匹配

      一种近似法,算法更快但是找到的是最近邻近似匹配,所以当我们需要找到一个相对好的匹配但是不需要最佳匹配的时候往往使用FlannBasedMatcher。
      《OpenCV开发笔记(六十八):红胖子8分钟带你使用特征点Flann最邻近差值匹配识别(图文并茂+浅显易懂+程序源码)

    概述

      对已知物体:过滤、去噪后、提取已知物体的特征点;
      对场景:过滤、去噪后、提取场景的特征点;
      对已知物体特征点集合和场景中的特征点集合去匹配,计算投影矩阵;
      若成功计算变换矩阵就表示识别到物体;
      通过原始的四个点位置进行变换矩阵计算,即可得到场景中的已知物体的四个顶点,该四个顶点连接起来就是已知物体的位置。

    特征点集合计算变换矩阵函数原型

    Mat findHomography(InputArray srcPoints,
                       InputArray dstPoints,
                       int method = 0,
                       double ransacReprojThreshold = 3,
                       OutputArray mask=noArray(),
                       const int maxIters = 2000,
                       const double confidence = 0.995);
    
    • 参数一:InputArray类型的srcPoints,源平面上的对应点,可以是CV_32FC2的矩阵类型或者vector;
    • 参数二:InputArray类型的dstPoints;目标平面上的对应点 , 可 以 是
      CV 32FC2 的矩阵类型或者 vector;
    • 参数三:int类型的method,用于计算单应矩阵的方法,如下图:
        在这里插入图片描述
    • 参数四:double类型的ransacReprojThreshold,最大允许重投影错误将点对视为内联线(仅用于RANSAC和RHO方法);
    • 参数五:OutputArray类型的mask,由鲁棒方法(RANSAC或LMEDS)设置的可选输出掩码。注意输入掩码值被忽略。;
    • 参数六:const int类型的maxIters,RANSAC迭代的最大数量。;
    • 参数七:const double类型的confidence,置信水平,介于0和1之间;

    矩阵变换函数原型

    void perspectiveTransform( InputArray src,
                               InputArray dst,
                               InputArray m);
    
    • 参数一:InputArray类型的src,输入两通道或三通道浮点数组;每个元素是要转换的二维/三维向量。
    • 参数二:InputArray类型的dst,与src大小和类型相同的输出数组;
    • 参数三:InputArray类型的h,3x3或4x4浮点转换矩阵。
     

    Demo源码

    void OpenCVManager::testFindKnownObject()
    {
        QString fileName1 = "21.jpg";
        QString fileName2 = "24.jpg";
        int width = 400;
        int height = 300;
    
        cv::Mat srcMat = cv::imread(fileName1.toStdString());
        cv::Mat srcMat3 = cv::imread(fileName2.toStdString());
        cv::resize(srcMat, srcMat, cv::Size(width, height));
        cv::resize(srcMat3, srcMat3, cv::Size(width, height));
    
    
        cv::String windowName = _windowTitle.toStdString();
        cvui::init(windowName);
    
        cv::Mat windowMat = cv::Mat(cv::Size(srcMat.cols * 2, srcMat.rows * 3),
                                    srcMat.type());
    
        cv::Ptr<cv::xfeatures2d::SIFT> _pSift = cv::xfeatures2d::SiftFeatureDetector::create();
        cv::Ptr<cv::xfeatures2d::SURF> _pSurf = cv::xfeatures2d::SurfFeatureDetector::create(450, 10, 10, true, true);
    
        cv::Ptr<cv::Feature2D> _pFeature2D;
        cv::Ptr<cv::DescriptorMatcher> _pDescriptorMatcher;
    
        int type = 0;
        int findType = 0;
        int k1x = 25;
        int k1y = 25;
        int k2x = 75;
        int k2y = 25;
        int k3x = 75;
        int k3y = 75;
        int k4x = 25;
        int k4y = 75;
    
        // 定义匹配器
        cv::Ptr<cv::FlannBasedMatcher> pFlannBasedMatcher = cv::FlannBasedMatcher::create();
        cv::Ptr<cv::BFMatcher> pBFMatcher = cv::BFMatcher::create();
        // 定义结果存放
        std::vector<cv::DMatch> listDMatch;
        // 存储特征点检测器检测特征后的描述字
        cv::Mat descriptor1;
        cv::Mat descriptor2;
    
        bool moveFlag = true;  // 移动的标志,不用每次都匹配
    
        std::vector<cv::Point2f> obj_corners(4);
        std::vector<cv::Point2f> scene_corners(4);
    
        windowMat = cv::Scalar(0, 0, 0);
        while(true)
        {
            cv::Mat mat;
            {
                std::vector<cv::KeyPoint> keyPoints1;
                std::vector<cv::KeyPoint> keyPoints2;
    
                int typeOld = type;
                int findTypeOld = findType;
                int k1xOld = k1x;
                int k1yOld = k1y;
                int k2xOld = k2x;
                int k2yOld = k2y;
                int k3xOld = k3x;
                int k3yOld = k3y;
                int k4xOld = k4x;
                int k4yOld = k4y;
    
                mat = windowMat(cv::Range(srcMat.rows * 0, srcMat.rows * 1),
                                cv::Range(srcMat.cols * 0, srcMat.cols * 1));
                mat = cv::Scalar(0);
    
    
                cvui::trackbar(windowMat, 0 + width * 0, 0 + height * 0, 165, &type, 0, 1);
                cv::String str;
                switch(type)
                {
                case 0:
                    str = "sift";
                    _pFeature2D = _pSift;
                    break;
                case 1:
                    str = "surf";
                    _pFeature2D = _pSurf;
                    break;
                default:
                    break;
                }
                cvui::printf(windowMat, width / 4 + width * 0 - 20, 40 + height * 0, str.c_str());
    
                cvui::trackbar(windowMat, width / 2 + width * 0, 0 + height * 0, 165, &findType, 0, 1);
                switch(findType)
                {
                case 0:
                    str = "BFMatcher";
                    _pDescriptorMatcher = pBFMatcher;
                    break;
                case 1:
                    str = "FlannBasedMatcher";
                    _pDescriptorMatcher = pFlannBasedMatcher;
                    break;
                default:
                    break;
                }
                cvui::printf(windowMat, width / 4 * 3 + width * 0 - 20, 40 + height * 0, str.c_str());
    
                cvui::printf(windowMat, 0 + width * 0, 60 + height * 0, "k1x");
                cvui::trackbar(windowMat, 0 + width * 0, 70 + height * 0, 165, &k1x, 0, 100);
                cvui::printf(windowMat, 0 + width * 0, 120 + height * 0, "k1y");
                cvui::trackbar(windowMat, 0 + width * 0, 130 + height * 0, 165, &k1y, 0, 100);
    
                cvui::printf(windowMat, width / 2 + width * 0, 60 + height * 0, "k2x");
                cvui::trackbar(windowMat, width / 2 + width * 0, 70 + height * 0, 165, &k2x, 0, 100);
                cvui::printf(windowMat, width / 2 + width * 0, 120 + height * 0, "k2y");
                cvui::trackbar(windowMat, width / 2 + width * 0, 130 + height * 0, 165, &k2y, 0, 100);
    
                cvui::printf(windowMat, 0 + width * 0, 30 + height * 0 + height / 2, "k3x");
                cvui::trackbar(windowMat, 0 + width * 0, 40 + height * 0 + height / 2, 165, &k3x, 0, 100);
                cvui::printf(windowMat, 0 + width * 0, 90 + height * 0 + height / 2, "k3y");
                cvui::trackbar(windowMat, 0 + width * 0, 100 + height * 0 + height / 2, 165, &k3y, 0, 100);
    
                cvui::printf(windowMat, width / 2 + width * 0, 30 + height * 0 + height / 2, "k4x");
                cvui::trackbar(windowMat, width / 2 + width * 0, 40 + height * 0 + height / 2, 165, &k4x, 0, 100);
                cvui::printf(windowMat, width / 2 + width * 0, 90 + height * 0 + height / 2, "k4y");
                cvui::trackbar(windowMat, width / 2 + width * 0, 100 + height * 0 + height / 2, 165, &k4y, 0, 100);
    
    
                if( k1xOld != k1x || k1yOld != k1y
                 || k2xOld != k2x || k2yOld != k2y
                 || k3xOld != k3x || k3yOld != k3y
                 || k4xOld != k4x || k4yOld != k4y
                 || typeOld != type || findTypeOld != findType)
                {
                    typeOld = type;
                    findTypeOld = findType;
                    moveFlag = true;
                }
    
                std::vector<cv::Point2f> srcPoints;
                std::vector<cv::Point2f> dstPoints;
    
                srcPoints.push_back(cv::Point2f(0.0f, 0.0f));
                srcPoints.push_back(cv::Point2f(srcMat.cols - 1, 0.0f));
                srcPoints.push_back(cv::Point2f(srcMat.cols - 1, srcMat.rows - 1));
                srcPoints.push_back(cv::Point2f(0.0f, srcMat.rows - 1));
    
                dstPoints.push_back(cv::Point2f(srcMat.cols * k1x / 100.0f, srcMat.rows * k1y / 100.0f));
                dstPoints.push_back(cv::Point2f(srcMat.cols * k2x / 100.0f, srcMat.rows * k2y / 100.0f));
                dstPoints.push_back(cv::Point2f(srcMat.cols * k3x / 100.0f, srcMat.rows * k3y / 100.0f));
                dstPoints.push_back(cv::Point2f(srcMat.cols * k4x / 100.0f, srcMat.rows * k4y / 100.0f));
    
                cv::Mat M = cv::getPerspectiveTransform(srcPoints, dstPoints);
                cv::Mat srcMat2;
                cv::warpPerspective(srcMat3,
                                    srcMat2,
                                    M,
                                    cv::Size(srcMat.cols, srcMat.rows),
                                    cv::INTER_LINEAR,
                                    cv::BORDER_CONSTANT,
                                    cv::Scalar::all(0));
    
                mat = windowMat(cv::Range(srcMat.rows * 0, srcMat.rows * 1),
                                cv::Range(srcMat.cols * 1, srcMat.cols * 2));
                cv::addWeighted(mat, 0.0f, srcMat2, 1.0f, 0.0f, mat);
    
                if(moveFlag)
                {
                    moveFlag = false;
                    //特征点检测
        //           _pSift->detect(srcMat, keyPoints1);
                    _pFeature2D->detectAndCompute(srcMat, cv::Mat(), keyPoints1, descriptor1);
                    //绘制特征点(关键点)
                    cv::Mat resultShowMat;
                    cv::drawKeypoints(srcMat,
                                      keyPoints1,
                                      resultShowMat,
                                      cv::Scalar(0, 0, 255),
                                      cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
                    mat = windowMat(cv::Range(srcMat.rows * 1, srcMat.rows * 2),
                                    cv::Range(srcMat.cols * 0, srcMat.cols * 1));
                    cv::addWeighted(mat, 0.0f, resultShowMat, 1.0f, 0.0f, mat);
    
                    //特征点检测
        //            _pSift->detect(srcMat2, keyPoints2);
                    _pFeature2D->detectAndCompute(srcMat2, cv::Mat(), keyPoints2, descriptor2);
                    //绘制特征点(关键点)
                    cv::Mat resultShowMat2;
                    cv::drawKeypoints(srcMat2,
                                      keyPoints2,
                                      resultShowMat2,
                                      cv::Scalar(0, 0, 255),
                                      cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
                    mat = windowMat(cv::Range(srcMat.rows * 1, srcMat.rows * 2),
                                    cv::Range(srcMat.cols * 1, srcMat.cols * 2));
                    cv::addWeighted(mat, 0.0f, resultShowMat2, 1.0f, 0.0f, mat);
    
                    // FlannBasedMatcher最近邻匹配
                    _pDescriptorMatcher->match(descriptor1, descriptor2, listDMatch);
                    // drawMatch绘制出来,并排显示了,高度一样,宽度累加(因为两个宽度相同,所以是两倍了)
                    cv::Mat matchesMat;
                    cv::drawMatches(srcMat,
                                    keyPoints1,
                                    srcMat2,
                                    keyPoints2,
                                    listDMatch,
                                    matchesMat);
    
                    mat = windowMat(cv::Range(srcMat.rows * 2, srcMat.rows * 3),
                                    cv::Range(srcMat.cols * 0, srcMat.cols * 2));
                    cv::addWeighted(mat, 0.0f, matchesMat, 1.0f, 0.0f, mat);
    
                    // 定义两个局部变量
                    std::vector<cv::Point2f> obj;
                    std::vector<cv::Point2f> scene;
                    // 从匹配成功的匹配对中获取关键点
                    for(int index = 0; index < listDMatch.size(); index++)
                    {
                        obj.push_back(keyPoints1[listDMatch[index].queryIdx].pt);
                        scene.push_back(keyPoints2[listDMatch[index].trainIdx].pt);
                    }
                    // 计算透视变换
                    cv::Mat H = cv::findHomography(obj, scene, CV_RANSAC);
                    // 从待测图片中获取角点
    
                    obj_corners[0] = cv::Point2f(0,0);
                    obj_corners[1] = cv::Point2f(srcMat.cols,0);
                    obj_corners[2] = cv::Point2f(srcMat.cols, srcMat.rows);
                    obj_corners[3] = cv::Point2f(0, srcMat.rows);
    
                    // 进行透视变换
                    cv::perspectiveTransform(obj_corners, scene_corners, H);
    
    
                }
                // 绘制出角点之间的线
                qDebug() << __FILE__ << __LINE__
                         << scene_corners[0].x
                         << scene_corners[0].y
                         << scene_corners[1].x
                         << scene_corners[1].y;
                cv::line(windowMat,
                         scene_corners[0] + cv::Point2f(srcMat.cols * 1, srcMat.rows * 0),
                         scene_corners[1] + cv::Point2f(srcMat.cols * 1, srcMat.rows * 0),
                         cv::Scalar(0, 0, 255), 2);
                cv::line(windowMat,
                         scene_corners[1] + cv::Point2f(srcMat.cols * 1, srcMat.rows * 0),
                         scene_corners[2] + cv::Point2f(srcMat.cols * 1, srcMat.rows * 0),
                         cv::Scalar(0, 0, 255), 2);
                cv::line(windowMat,
                         scene_corners[2] + cv::Point2f(srcMat.cols * 1, srcMat.rows * 0),
                         scene_corners[3] + cv::Point2f(srcMat.cols * 1, srcMat.rows * 0),
                         cv::Scalar(0, 0, 255), 2);
                cv::line(windowMat,
                         scene_corners[3] + cv::Point2f(srcMat.cols * 1, srcMat.rows * 0),
                         scene_corners[0] + cv::Point2f(srcMat.cols * 1, srcMat.rows * 0),
                         cv::Scalar(0, 0, 255), 2);
            }
            cv::imshow(windowName, windowMat);
            // 更新
            cvui::update();
            // 显示
            // esc键退出
            if(cv::waitKey(25) == 27)
            {
                break;
            }
        }
    }
    
     

    工程模板:对应版本号v1.63.0

      对应版本号v1.63.0

     
  • 相关阅读:
    GAN阶段性小结(损失函数、收敛性分析、训练技巧、应用“高分辨率、domain2domain”、研究方向)
    MMD :maximum mean discrepancy
    Chinese-BERT-wwm
    VGG16学习笔记
    jupyter notebook使用技巧--命令行模式以及在Markdown模式使用的操作(4)
    不同领域公开数据集下载
    数据挖掘竞赛,算法刷题网址汇总
    在keras下实现多个模型的融合
    问题集合
    开源测试数据集合
  • 原文地址:https://www.cnblogs.com/qq21497936/p/13448776.html
Copyright © 2011-2022 走看看