原文地址 www.tslang.cn
继承
class Animal {
name: string;
constructor(theName: string) { this.name = theName; }
move(distanceInMeters: number = 0) {
console.log(`${this.name} moved ${distanceInMeters}m.`);
}
}
class Snake extends Animal {
constructor(name: string) { super(name); }
move(distanceInMeters = 5) {
console.log("Slithering...");
super.move(distanceInMeters);
}
}
class Horse extends Animal {
constructor(name: string) { super(name); }
move(distanceInMeters = 45) {
console.log("Galloping...");
super.move(distanceInMeters);
}
}
let sam = new Snake("Sammy the Python");
let tom: Animal = new Horse("Tommy the Palomino");
sam.move();
tom.move(34);
与前一个例子的不同点是,派生类包含了一个构造函数,它 _必须_调用 super()
,它会执行基类的构造函数。 而且,在构造函数里访问 this
的属性之前,我们 _一定_要调用 super()
。 这个是 TypeScript 强制执行的一条重要规则。
公共,私有与受保护的修饰符
理解 private
当成员被标记成 private
时,它就不能在声明它的类的外部访问。比如:
class Animal {
private name: string;
constructor(theName: string) { this.name = theName; }
}
new Animal("Cat").name; // 错误: 'name' 是私有的.
然而,当我们比较带有 private
或 protected
成员的类型的时候,情况就不同了。 如果其中一个类型里包含一个 private
成员,那么只有当另外一个类型中也存在这样一个 private
成员, 并且它们都是来自同一处声明时,我们才认为这两个类型是兼容的。 对于 protected
成员也使用这个规则。
class Animal {
private name: string;
constructor(theName: string) { this.name = theName; }
}
class Rhino extends Animal {
constructor() { super("Rhino"); }
}
class Employee {
private name: string;
constructor(theName: string) { this.name = theName; }
}
let animal = new Animal("Goat");
let rhino = new Rhino();
let employee = new Employee("Bob");
animal = rhino;
animal = employee; // 错误: Animal 与 Employee 不兼容.
理解 protected
protected
修饰符与 private
修饰符的行为很相似,但有一点不同, protected
成员在派生类中仍然可以访问。例如:
class Person {
protected name: string;
constructor(name: string) { this.name = name; }
}
class Employee extends Person {
private department: string;
constructor(name: string, department: string) {
super(name)
this.department = department;
}
public getElevatorPitch() {
return `Hello, my name is ${this.name} and I work in ${this.department}.`;
}
}
let howard = new Employee("Howard", "Sales");
console.log(howard.getElevatorPitch());
console.log(howard.name); // 错误
注意,我们不能在 Person
类外使用 name
,但是我们仍然可以通过 Employee
类的实例方法访问,因为 Employee
是由 Person
派生而来的。
构造函数也可以被标记成 protected
。 这意味着这个类不能在包含它的类外被实例化,但是能被继承。比如,
class Person {
protected name: string;
protected constructor(theName: string) { this.name = theName; }
}
// Employee 能够继承 Person
class Employee extends Person {
private department: string;
constructor(name: string, department: string) {
super(name);
this.department = department;
}
public getElevatorPitch() {
return `Hello, my name is ${this.name} and I work in ${this.department}.`;
}
}
let howard = new Employee("Howard", "Sales");
let john = new Person("John"); // 错误: 'Person' 的构造函数是被保护的.
readonly修饰符
你可以使用 readonly
关键字将属性设置为只读的。 只读属性必须在声明时或构造函数里被初始化。
注释:只读属性可以在实例中访问但是不能赋值
class Octopus {
readonly name: string;
readonly numberOfLegs: number = 8;
constructor (theName: string) {
this.name = theName;
}
}
let dad = new Octopus("Man with the 8 strong legs");
dad.name = "Man with the 3-piece suit"; // 错误! name 是只读的.
参数属性
_参数属性_可以方便地让我们在一个地方定义并初始化一个成员。 下面的例子是对之前 Octopus
类的修改版,使用了参数属性:
class Octopus {
readonly numberOfLegs: number = 8;
constructor(readonly name: string) {
}
}
参数属性通过给构造函数参数前面添加一个访问限定符来声明。 使用 private
限定一个参数属性会声明并初始化一个私有成员;对于 public
和 protected
来说也是一样。
存取器
TypeScript 支持通过 getters/setters 来截取对对象成员的访问。 它能帮助你有效的控制对对象成员的访问。
let passcode = "secret passcode";
class Employee {
private _fullName: string;
get fullName(): string {
return this._fullName;
}
set fullName(newName: string) {
if (passcode && passcode == "secret passcode") {
this._fullName = newName;
}
else {
console.log("Error: Unauthorized update of employee!");
}
}
}
let employee = new Employee();
employee.fullName = "Bob Smith";
if (employee.fullName) {
alert(employee.fullName);
}
首先,存取器要求你将编译器设置为输出 ECMAScript 5 或更高。 不支持降级到 ECMAScript 3。 其次,只带有 get
不带有 set
的存取器自动被推断为 readonly
。 这在从代码生成 .d.ts
文件时是有帮助的,因为利用这个属性的用户会看到不允许够改变它的值。
静态属性
到目前为止,我们只讨论了类的实例成员,那些仅当类被实例化的时候才会被初始化的属性。 我们也可以创建类的静态成员,这些属性存在于类本身上面而不是类的实例上。 在这个例子里,我们使用 static
定义 origin
,因为它是所有网格都会用到的属性。 每个实例想要访问这个属性的时候,都要在 origin
前面加上类名。 如同在实例属性上使用 this.
前缀来访问属性一样,这里我们使用 Grid.
来访问静态属性。
注释:静态属性可以在多个类的实例中共用,并且可以被继承
class Grid {
static origin = {x: 0, y: 0};
getOrigin() {
return Grid.origin
}
setOrigin(x:number) {
Grid.origin.x = x
}
}
let grid1 = new Grid();
let grid2 = new Grid();
console.log(grid1.getOrigin())
grid1.setOrigin(10)
console.log(grid2.getOrigin())
抽象类
抽象类做为其它派生类的基类使用。 它们一般不会直接被实例化。 不同于接口,抽象类可以包含成员的实现细节。 abstract
关键字是用于定义抽象类和在抽象类内部定义抽象方法。
abstract class Animal {
abstract makeSound(): void;
abstract some:string;
move(): void {
console.log('roaming the earch...');
}
}
抽象类中的抽象方法不包含具体实现并且必须在派生类中实现。 抽象方法的语法与接口方法相似。 两者都是定义方法签名但不包含方法体。 然而,抽象方法必须包含 abstract
关键字并且可以包含访问修饰符。
abstract class Department {
constructor(public name: string) {
}
printName(): void {
console.log('Department name: ' + this.name);
}
abstract printMeeting(): void; // 必须在派生类中实现
}
class AccountingDepartment extends Department {
constructor() {
super('Accounting and Auditing'); // 在派生类的构造函数中必须调用 super()
}
printMeeting(): void {
console.log('The Accounting Department meets each Monday at 10am.');
}
generateReports(): void {
console.log('Generating accounting reports...');
}
}
let department: Department; // 允许创建一个对抽象类型的引用
department = new Department(); // 错误: 不能创建一个抽象类的实例
department = new AccountingDepartment(); // 允许对一个抽象子类进行实例化和赋值
department.printName();
department.printMeeting();
department.generateReports(); // 错误: 方法在声明的抽象类中不存在
高级技巧
构造函数
当你在 TypeScript 里声明了一个类的时候,实际上同时声明了很多东西。 首先就是类的 _实例_的类型。
class Greeter {
greeting: string;
constructor(message: string) {
this.greeting = message;
}
greet() {
return "Hello, " + this.greeting;
}
}
let greeter: Greeter;
greeter = new Greeter("world");
console.log(greeter.greet());
class Greeter {
static standardGreeting = "Hello, there";
greeting: string;
greet() {
if (this.greeting) {
return "Hello, " + this.greeting;
}
else {
return Greeter.standardGreeting;
}
}
}
let greeter1: Greeter;
greeter1 = new Greeter();
console.log(greeter1.greet());
let greeterMaker: typeof Greeter = Greeter;
greeterMaker.standardGreeting = "Hey there!";
let greeter2: Greeter = new greeterMaker();
console.log(greeter2.greet());
我们创建了一个叫做 greeterMaker
的变量。 这个变量保存了这个类或者说保存了类构造函数。 然后我们使用 typeof Greeter
,意思是取 Greeter 类的类型,而不是实例的类型。 或者更确切的说," 告诉我 Greeter
标识符的类型 ",也就是构造函数的类型。 这个类型包含了类的所有静态成员和构造函数。 之后,就和前面一样,我们在 greeterMaker
上使用 new
,创建 Greeter
的实例。
把类当做接口使用
如上一节里所讲的,类定义会创建两个东西:类的实例类型和一个构造函数。 因为类可以创建出类型,所以你能够在允许使用接口的地方使用类。
注释:所以上例中使用 typeof 从构造函数中返回了构造函数的类型
class Point {
x: number;
y: number;
}
interface Point3d extends Point {
z: number;
}
let point3d: Point3d = {x: 1, y: 2, z: 3};
—————————————————————————————————————————————————————————————
注释:以下内容来至于 TS 3.1 - 接口
类类型
实现接口
与 C# 或 Java 里接口的基本作用一样,TypeScript 也能够用它来明确的强制一个类去符合某种契约。
interface ClockInterface {
currentTime: Date;
}
class Clock implements ClockInterface {
currentTime: Date;
constructor(h: number, m: number) { }
}
你也可以在接口中描述一个方法,在类里实现它,如同下面的setTime
方法一样:
interface ClockInterface {
currentTime: Date;
setTime(d: Date);
}
class Clock implements ClockInterface {
currentTime: Date;
setTime(d: Date) {
this.currentTime = d;
}
constructor(h: number, m: number) { }
}
接口描述了类的公共部分,而不是公共和私有两部分。 它不会帮你检查类是否具有某些私有成员。
—————————————————————————————————————————————————————————————
注释:以下内容来至于 TS 3.1 - 类型兼容性
类
类与对象字面量和接口差不多,但有一点不同:类有静态部分和实例部分的类型。 比较两个类类型的对象时,只有实例的成员会被比较。 静态成员和构造函数不在比较的范围内。
class Animal {
feet: number;
constructor(name: string, numFeet: number) { }
}
class Size {
feet: number;
constructor(numFeet: number) { }
}
let a: Animal;
let s: Size;
a = s; // OK
s = a; // OK