zoukankan      html  css  js  c++  java
  • #np.random.normal,产生制定分布的数集(默认是标准正态分布)

    http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html

    #np.random.normal,产生制定分布的数集
    #http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html
    # mean and standard deviation
    # 均值的物理意义mu,Mean (“centre”) of the distribution.
    # 方差的物理意义sigma,Standard deviation (spread or “width”) of the distribution
    import numpy as np

    mu, sigma = 0, 0.1
    s = np.random.normal(mu, sigma, 1000)

    #验证均值和方差,是否和随机生成的一样
    print(abs(mu - np.mean(s)) < 0.01)
    print(abs(sigma - np.std(s, ddof=1)) < 0.01) #ddof不知道什么意思


    import matplotlib.pyplot as plt

    count, bins, ignored = plt.hist(s, 10, normed=True)
    plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2) ),linewidth=2, color='r')
    plt.show()

    numpy.random.normal

    numpy.random.normal(loc=0.0, scale=1.0, size=None)

    Draw random samples from a normal (Gaussian) distribution.

    The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [R250], is often called the bell curve because of its characteristic shape (see the example below).

    The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [R250].

    Parameters:

    loc : float

    Mean (“centre”) of the distribution.

    scale : float

    Standard deviation (spread or “width”) of the distribution.

    size : int or tuple of ints, optional

    Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.

  • 相关阅读:
    AT24C0X I2C通信原理
    Windows文件夹、文件源代码对比工具--WinMerge
    SignalTap导致PCIe Read/Write卡死
    Windows CMD 支持ls命令
    何为内存模型(JMM)?
    何为内存重排序?
    何为安全发布,又何为安全初始化?
    Hibernate入门之many to many关系映射详解
    Hibernate入门之one to many关系映射详解
    Hibernate入门之one to one关系映射详解
  • 原文地址:https://www.cnblogs.com/qqhfeng/p/5336293.html
Copyright © 2011-2022 走看看