zoukankan      html  css  js  c++  java
  • numpy.linalg.eig

    1、转置对于二维数组有用,对一位数组无效

    2、理解特征值和特征向量的对应关系

    a=np.array([[1 ,2, 3],[4, 5, 6],[7, 8, 9]])
    
    a
    Out[27]: 
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]])
    
    w,v = LA.eig(a)
    
    w
    Out[29]: array([  1.61168440e+01,  -1.11684397e+00,  -1.30367773e-15])
    
    v
    Out[30]: 
    array([[-0.23197069, -0.78583024,  0.40824829],
           [-0.52532209, -0.08675134, -0.81649658],
           [-0.8186735 ,  0.61232756,  0.40824829]])
    
    a
    Out[31]: 
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]])
    
    #dot(a[:,:], v[:,i]) = w[i] * v[:,i]
    
    w[0]
    Out[33]: 16.116843969807043
    
    v[:,0]
    Out[34]: array([-0.23197069, -0.52532209, -0.8186735 ])
    
    w[0]*v[:,0]
    Out[35]: array([ -3.73863537,  -8.46653421, -13.19443305])
    
    np.dot(a[:,:],v[:,0])
    Out[37]: array([ -3.73863537,  -8.46653421, -13.19443305])
    
    a
    Out[38]: 
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]])
    
    v[:,0]
    Out[39]: array([-0.23197069, -0.52532209, -0.8186735 ])
    
    1*-0.23197069+2*-0.52532209+3*-0.8186735
    Out[40]: -3.73863537
    
    4*-0.23197069+5*-0.52532209+6*-0.8186735
    Out[41]: -8.46653421
    
    v[:,0]
    Out[42]: array([-0.23197069, -0.52532209, -0.8186735 ])
    
    v[:,0].T
    Out[43]: array([-0.23197069, -0.52532209, -0.8186735 ])
    
    w[0]
    Out[44]: 16.116843969807043
    
    w[0]*v[:,0]
    Out[45]: array([ -3.73863537,  -8.46653421, -13.19443305])
    
    a
    Out[46]: 
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]])
    
    a.T
    Out[47]: 
    array([[1, 4, 7],
           [2, 5, 8],
           [3, 6, 9]])
    
    c = v[0]
    
    c
    Out[49]: array([-0.23197069, -0.78583024,  0.40824829])
    
    c.T
    Out[50]: array([-0.23197069, -0.78583024,  0.40824829])
    a
    Out[55]: 
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]])
    
    a*v[:,0]
    Out[56]: 
    array([[-0.23197069, -1.05064419, -2.4560205 ],
           [-0.92788275, -2.62661047, -4.912041  ],
           [-1.62379481, -4.20257675, -7.36806149]])
    
    v[:,0]
    Out[57]: array([-0.23197069, -0.52532209, -0.8186735 ])

    y = a*v[:,0]
    
    y
    Out[59]: 
    array([[-0.23197069, -1.05064419, -2.4560205 ],
           [-0.92788275, -2.62661047, -4.912041  ],
           [-1.62379481, -4.20257675, -7.36806149]])
    
    np.sum(y[0,:])
    Out[63]: -3.7386353719172973
    
    np.sum(y[1,:])
    Out[64]: -8.4665342116284013
    
    np.sum(y[2,:])
    Out[65]: -13.194433051339505
  • 相关阅读:
    Vue.directive()方法创建全局自定义指令
    vue中通过ref属性来获取dom的引用
    v-cloak指令
    v-if和v-show
    vue中的v-on事件监听机制
    vue指令v-model
    vue中v-for系统指令的使用
    从零开始在虚拟机中搭建一个4个节点的CentOS集群(一)-----下载及配置CentOS
    MySQL-数据库创建与删除
    MySQL-PREPARE语句
  • 原文地址:https://www.cnblogs.com/qqhfeng/p/5782464.html
Copyright © 2011-2022 走看看