You are given three strings ss, tt and pp consisting of lowercase Latin letters. You may perform any number (possibly, zero) operations on these strings.
During each operation you choose any character from pp, erase it from pp and insert it into string ss (you may insert this character anywhere you want: in the beginning of ss, in the end or between any two consecutive characters).
For example, if pp is aba, and ss is de, then the following outcomes are possible (the character we erase from pp and insert into ss is highlighted):
- aba →→ ba, de →→ ade;
- aba →→ ba, de →→ dae;
- aba →→ ba, de →→ dea;
- aba →→ aa, de →→ bde;
- aba →→ aa, de →→ dbe;
- aba →→ aa, de →→ deb;
- aba →→ ab, de →→ ade;
- aba →→ ab, de →→ dae;
- aba →→ ab, de →→ dea;
Your goal is to perform several (maybe zero) operations so that ss becomes equal to tt. Please determine whether it is possible.
Note that you have to answer qq independent queries.
Input
The first line contains one integer qq (1≤q≤1001≤q≤100) — the number of queries. Each query is represented by three consecutive lines.
The first line of each query contains the string ss (1≤|s|≤1001≤|s|≤100) consisting of lowercase Latin letters.
The second line of each query contains the string tt (1≤|t|≤1001≤|t|≤100) consisting of lowercase Latin letters.
The third line of each query contains the string pp (1≤|p|≤1001≤|p|≤100) consisting of lowercase Latin letters.
Output
For each query print YES if it is possible to make ss equal to tt, and NO otherwise.
You may print every letter in any case you want (so, for example, the strings yEs, yes, Yes and YES will all be recognized as positive answer).
Example
4 ab acxb cax a aaaa aaabbcc a aaaa aabbcc ab baaa aaaaa
YES YES NO NO
Note
In the first test case there is the following sequence of operation:
- s=s= ab, t=t= acxb, p=p= cax;
- s=s= acb, t=t= acxb, p=p= ax;
- s=s= acxb, t=t= acxb, p=p= a.
In the second test case there is the following sequence of operation:
- s=s= a, t=t= aaaa, p=p= aaabbcc;
- s=s= aa, t=t= aaaa, p=p= aabbcc;
- s=s= aaa, t=t= aaaa, p=p= abbcc;
- s=s= aaaa, t=t= aaaa, p=p= bbcc.
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; const int maxn=105; char s[maxn],t[maxn],p[maxn]; int Find(char *a,char *b){ int alen=strlen(a); int blen=strlen(b); int cnt=0; for(int i=0;i<blen;i++){ if(b[i]==a[cnt]){ cnt++; } } if(cnt==alen){ return 1; }else{ return 0; } } int Insert(char *a,char *b,char *c){ int alen=strlen(a); int blen=strlen(b); int clen=strlen(c); int ans=0,cnt=0; int book[maxn]; memset(book,-1,sizeof(book)); for(int i=0;i<clen;i++){ if(a[cnt]==c[i]){ cnt++; ans++; }else{ for(int j=0;j<blen;j++){ if(c[i]==b[j]&&book[j]!=1){ ans++; book[j]=1; break; } } } } if(ans==clen){ return 1; }else{ return 0; } } int main(){ int Case; scanf("%d",&Case); while(Case--){ scanf("%s%s%s",s,t,p); int slen=strlen(s); int tlen=strlen(t); if(slen>tlen){ printf("NO "); }else{ if(Find(s,t)&&Insert(s,p,t)){ printf("YES "); }else{ printf("NO "); } } } return 0; }